
sign
 last

owed

er

 the
-

Refinements to Smart Pointers

My last three columns described the design and implementation of smart pointers,
with an emphasis on getting them to look as much as possible like dumb pointers.
Since publication of those columns, I’ve been told of some refinements to my de
that make smart pointers look even more like dumb pointers. In this column — my
for the C++ Report — I discuss these improvements.

Nullness Testing and Mixed-type Comparisons

In June, I examined the problem of how to test smart pointers for nullness. I sh
how the “natural” conversion from a smart pointer to void* or to bool allowed
mixed-type comparisons that would not be allowed for dumb pointers:

template<class T>
class SmartPtr {
public:
...
operator bool(); // returns true iff the
... // smart ptr is non-null

};

SmartPtr<Apple> pa;
SmartPtr<Orange> po;

...

if (pa == po) ... // unfortunately, this compiles due
// to implicit conversions to bool

To avoid such problems, I suggested providing only operator!:

template<class T>
class SmartPtr {
public:
...
bool operator!() const; // returns true iff the
... // smart ptr is null

};

This lets clients program like this,

SmartPtr<TreeNode> ptn;

...

if (!ptn) ... // fine

but not like this:

if (ptn == 0) ... // error!

if (ptn) ... // also an error

This is a pre-publication draft of the column I wrote for the November-Decemb
1996 issue of the C++ Report. “Pre-publication” means this is what I sent to the
Report, but it may not be exactly the same as what appeared in print, because
Report and I often make small changes after I submit the “final” draft for a col
umn. Comments? Feel free to send me mail: smeyers@aristeia.com.

i-
tance
ere

 com-
e.

inter
ry

rived

might
tance
t

 with

or-

se
te. If
In response to this column, readers Eric Hopper and Michael Klobe each sent mail
showing how they’d come up with different solutions to the problem. Eric wrote:

Providing an operator bool() conversion doesn't necessarily lead to strange
conversions being applied willy-nilly. Many of these conversions can be elim
nated by the judicious use of a base class. Of course, base classes and inheri
are currently unfashionable concepts, so you may not want to use them, but h
is how you might do it:

class SmartPtrBase {
private:
// No implementations needed for the following, a la
// hidden copy and assignment functions
void operator==(const SmartPtrBase &b) const;
void operator!=(const SmartPtrBase &b) const;
...

};

template<class T>
class SmartPtr: public SmartPtrBase {
public:
operator bool() const { return(ptr != 0); }

bool operator==(const SmartPtr<T> &b) const
{ return(ptr == b.ptr); }

...

private:
T *ptr;

};

SmartPtr<Fred> a1;
SmartPtr<Fred> a2;

...

if (a1 == a2) ... // fine

SmartPtr<Joe> b;

...

if (a1 == b) ... // error, operator== is private

In other words, all smart pointer classes inherit from SmartPtrBase, and SmartP-
trBase declares the comparison operators private. This makes any kind of smart
pointer comparison illegal. Derived classes then define their own homogeneous
parison operators if they wish to support comparisons of smart pointers. Very nic

I can think of two drawbacks to this approach. First, it requires that all smart po
classes inherit from SmartPtrBase. Some programmers rebel against mandato
base classes for small, light-weight objects like smart pointers. However, SmartPtr-
Base should have no data, so it shouldn’t affect the size or performance of de
class objects in any way.

It’s worth noting that the use of public inheritance implies that SmartPtrBase should
have a virtual destructor, and that could add a vptr to smart pointer classes that
otherwise not have one. That problem can be eliminated by using private inheri
between SmartPtr and SmartPtrBase. Using private inheritance would make i
necessary to use a cast to convert from a SmartPtr<T> to a SmartPtrBase (i.e.,
from a typed smart pointer to an untyped smart pointer), and this is inconsistent
the behavior of dumb pointers (which may be implicitly converted to void*s). But a
SmartPtrBase object, like a void*, is essentially useless until cast back to the c
rect type. If type-safe casts (i.e., dynamic_casts) are to be supported on SmartPtr-
Base objects, SmartPtrBase must have at least one virtual function (in which ca
its derived classes must accept a vptr), and public inheritance is appropria

com-

it will

t
this:

irable.
er
ic’s
ns:

be
e re-
dynamic_casts are not needed, private inheritance and a nonvirtual destructor
strikes me as a reasonable design.

The second drawback to Eric’s approach has to do with mixed smart-and-dumb
parisons. Consider this code:

SmartPtr<Apple> spa = new Apple; // spa = smart ptr to Apple

Apple *dpa = new Apple; // dpa = dumb ptr to Apple

if (spa == dpa) ... // should this compile?

It doesn’t seem unreasonable to expect the comparison to compile, and in fact
(unless the smart pointer constructor taking a dumb pointer is declared explicit1).
It does so, however, via implicit conversion of dpa from a dumb pointer to a smar
pointer via the smart pointer constructor. In other words, the code is treated like

if (spa == static_cast< SmartPtr<Apple> >(dpa)) ...

However, if this compiles,

if (spa == dpa) ... // compare smart ptr to dumb ptr

surely this should compile as well:

if (dpa == spa) ... // compare dumb ptr to smart ptr

Unless SmartPtr<T> provides an operator T* function, however, it will not, and
my June column discussed reasons why such a conversion is generally undes
That being the case, making operator== (or any other relational operator) a memb
function is generally inferior to declaring it as a non-member. I’d thus modify Er
design by declaring a non-member template to handle homogeneous compariso

class SmartPtrBase { ... }; // as above

template<class T>
class SmartPtr:
private SmartPtrBase { // note private inheritance

public:
operator bool() const { return(ptr != 0); }

...

friend bool operator==(const SmartPtr<T>& p1,
const SmartPtr<T>& p2);

};

template<class T>
inline bool operator==(const SmartPtr<T>& p1,

const SmartPtr<T>& p2)
{ return p1.ptr == p2.ptr; }

SmartPtr<Fred> a1;
SmartPtr<Joe> b;

...

if (a1 == b) ... // error, operator== is still private

SmartPtr<Fred> a2;

if (a1 == a2) ... // okay, instantiates operator==<Fred>

Fred *dpf = new Fred;

if (a1 == dpf) ... // these comparisons fail to compile
if (dpf == a1) ...

Note that now both smart-and-dumb pointer comparisons fail to compile. It would
preferable if we could somehow make them both work, but consider what would b

1. Scott Meyers, More Effective C++, Addison-Wesley, 1996, pp. 24-31.

-
 im-
alls

hion-

ixed

ver
as

ver-
quired for that to happen. First the compiler would have to instantiate opera-
tor==<Fred>, then it would have to apply a user-defined conversion to the dumb
pointer to turn it into a SmartPtr<Fred> object. The rules of C++ don’t allow com
pilers to do that, because the combination of implicit template instantiation and
plicit type conversion via user-defined functions could too easily allow function c
to succeed when programmers would expect them to fail.

With the non-member operator== template, both

if (a1 == dpf) ... // error!

if (dpf == a1) ... // error!

will be treated the same way; that’s a characteristic Eric’s solution lacks.

Michael Klobe suggested a different solution, one that avoids the use of (unfas
able?) base classes:

I tend to use the conversion-to-bool technique, and introduce two equality oper-
ators to prevent the mixed-type comparisons:

template< class T >
class smart {
public:
// Constructor.
smart(T* p = 0): pointer_(p) {}

// Conversion operator to ease nullness testing
operator bool() { return pointer_; }

// Equality comparison
bool operator==(const smart< T >& s) const
{ return pointer_ == s.pointer_; }

...

private:
T* pointer_;

};

// Redundant equality operator to prevent
// smart< X > == smart< Y >. A similar technique could be
// used for operator< and other needed relational
// operators.
template< class T1, class T2 >
inline bool
operator==(const smart< T1 >& s1, const smart< T2 >& s2)
{ return s1.operator==(s2); }

smart< int > pint1;
smart< int > pint2;

if (pint1 == pint2) ... // compiles as expected

smart< long > plong;

if (pint1 == plong) ... // won’t compile!

This will cause compile-time diagnostics for the mixed-type comparison.

Because Michael’s solution is based on non-member functions, it handles m
smart-and-dumb comparisons in a uniform manner: it rejects them.

Implicit Smart-to-Dumb Conversions and Smart Pointer Deletion

Attacking a different problem in a different forum, John Hickin demonstrated a cle
way to eliminate the “particularly nasty bug” I described in my June column. I w
considering whether it was wise to provide implicit smart-to-dumb pointer con

seen
uc-
 the
ithm
rea-
sions, and I explained how such conversions make it possible to delete smart pointer
objects:

template<class T> // template for smart ptrs
class DBPtr { // to database objects
public:
...
operator T*() const { return pointee; }
...

private:
T *pointee;

};

void processTuple(Tuple *pt); // some function that takes
// a dumb Tuple* pointer

DBPtr<Tuple> pt = new Tuple;

...

processTuple(pt); // fine, implicitly converts
// pt to a Tuple*

delete pt; // also fine -- converts pt
// to a Tuple*, then
// deletes that!

A related topic came up in the Usenet discussion group comp.std.c++, and I posted
my observation there. John Hickin made a follow-up posting in which he off-handedly
remarked that he solved this problem by adding a second smart-to-dumb pointer con-
version to the smart pointer template: conversion to void*!

template<class T>
class DBPtr {
public:
...
operator T*() const { return pointee; }
...

private:
operator void*() const; // this is new

T *pointee;
};

DBPtr<Tuple> pt = new Tuple;

...

processTuple(pt); // fine, still implicitly
// converts pt to a Tuple*

delete pt; // error! ambiguous call:
// convert to Tuple* or to
// void*?

I really like this solution, because it demonstrates something I don’t recall having
before: the deliberate introduction of ambiguity to prevent a function call from s
ceeding. Usually when we want function calls to fail, we either avoid declaring
function or (as in Eric’s design above) we declare the function private. The algor
for resolving calls to overloaded functions, however, may fail for any of three
sons:2

■ There is no function to call

2. For more details on resolving calls to overloaded functions than any human should
have to master, see Josee Lajoie’s columns in the July/August 1995 and the January
1996 C++ Reports

rst-
yr-
ment

o sold

s, nor
nt,”

g —
 to

out
 one
aga-

iting.
ad, I
too

 with
plica-
nda-
ined:

rules
ions
■ The called function is inaccessible

■ The function call is ambiguous

John’s design takes advantage of the oft-overlooked third option.

Further Smart Pointer Reading

If you’re still interested in smart pointers, I encourage you to check out Cay Ho
mann’s 1993 article on the topic.3 The ideas he presents there can be employed in m
iad ways, so don’t be put off by the fact that the topic at hand is memory manage
in DOS.

If you’re really interested in smart pointers, consider Jeff Alger’s book,4 which has
more to say about smart pointers than any other source I know of. In fact, Jeff is s
on smart pointers, he offers this advice (I am not making this up):

■ Use smart pointers, even if you aren’t sure why you should.5

I can’t generate quite as much enthusiasm about smart pointers as Alger doe
could I bring myself (as he does) to call some smart pointers “insufferably brillia
but perhaps that’s just because I’m shallow :-) 6

But Wait! — There’s No More

For the longest time I was unable to fathom why so many newspaper and magazine
columns are vacuous and insipid. Now I know. When a deadline approaches, you are
required to come up with enough material to fill a particular number of column inches,
and inspiration fails, you lower your standards until you can spit out somethin
anything — that will fill the allotted space. (This also explains why television tends
be atrocious: bad programming is preferable to no programming.)

I’ve been writing this column for over four years now, and I find myself running
of worthwhile things to say. Furthermore, having in the past six years also written
dissertation, two books, the bulk of two others, several technical papers, a few m
zine articles, and countless email messages relating to the above, I’m tired of wr
I never intended to be an author, and I now wish to retire from it for a while. Inste
want to turn my efforts to a different kind of authorship, a kind I’ve neglected for
long: real programming.

I’ve studied C++ for years, but now I want to start using it again. By the time you read
this, I should have been back at it for several months, cursing compilers, fighting
debuggers, battling operating systems, and desperately trying to understand ap
tion frameworks and other APIs. Just like you. Frankly, I suspect that little has fu
mentally changed since 1990, when I wrote a paper with the best title I ever co
“Object-oriented programming: the view from the trenches is not always pretty.”7

I’m looking forward to seeing that view again.

Acknowledgment

During preparation of this column, Josee Lajoie patiently explained the latest
governing template instantiation and how they interact with implicit type convers
on function parameters.

3. Cay Horstmann, “Memory Management and Smart Pointers,” C++ Report, March-April
1993.

4. Jeff Alger, Secrets of the C++ Masters, Academic Press, 1995.
5. Ibid, pg. 224.
6. Cay Horstmann, “New (PC) Products,” C++ Report, April 1996.
7. “Working with Object-Oriented Programs: The View from the Trenches is Not Always

Pretty,” Proceedings of the Symposium on Object-Oriented Programming emphasizing
Practical Applications (SOOPPA), September 1990.

Author Bio

Scott Meyers has a Ph.D. in Computer Science and is the author of Effective C++ and
More Effective C++; he is also primary author of The Downloader’s Companion for
Windows and The Downloader’s Companion for Windows 95. He provides C++ train-
ing and consulting services to clients worldwide. Scott can be reached via email at sm-
eyers@aristeia.com.

	Refinements to Smart Pointers
	Nullness Testing and Mixed-type Comparisons
	Implicit Smart-to-Dumb Conversions and Smart Pointer Deletion
	Further Smart Pointer Reading
	But Wait! — There’s No More
	Acknowledgment
	Author Bio

