
1

Distinguishing STL Search Algorithms

This article is based on material in Scott’s new book, Effective STL [1].

So you want to look for something, and you have a container or you
have iterators demarcating a range where you think it’s located. How
do you conduct the search? Your quiver is fairly bursting with arrows:
count, count_if, find, find_if, binary_search, lower_bound, upper_bound,
and equal_range. Decisions, decisions! How do you choose?

Easy. You reach for something that’s fast and simple. The faster and
simpler, the better.

For the time being, I’ll assume that you have a pair of iterators speci-
fying a range to be searched. Later, I’ll consider the case where you
have a container instead of a range.

In selecting a search strategy, much depends on whether your itera-
tors define a sorted range. If they do, you can get speedy (usually log-
arithmic-time) lookups via binary_search, lower_bound, upper_bound,
and equal_range. If the iterators don’t demarcate a sorted range, you’re
limited to the linear-time algorithms count, count_if, find, and find_if. In
what follows, I’ll ignore the _if variants of count and find, just as I’ll
ignore the variants of binary_search, lower_ and upper_bound, and
equal_range taking a predicate. Whether you rely on the default search
predicate or you specify your own, the considerations for choosing a
search algorithm are the same.

If you have an unsorted range, your choices are count or find. They
answer slightly different questions, so it’s worth taking a closer look at
them. count answers the question, “Is the value there, and if so, how
many copies are there?” while find answers the question, “Is it there,
and if so, where is it?”

Suppose all you want to know is whether some special Widget value w
is in a list. Using count, the code looks like this:

list<Widget> lw; // list of Widgets
Widget w; // special Widget value

...

This is a pre-publication draft of the article I wrote for the Decem-
ber 2001 issue of C/C++ Users Journal. “Pre-publication” means
this is what I sent to CUJ, but it may not be exactly the same as
what appeared in print, because CUJ and I typically make small
changes during preparation of the final version of the article.

2

if (count(lw.begin(), lw.end(), w)) {
... // w is in lw

} else {
... // it’s not

}

This demonstrates a common idiom: using count as an existence test.
count returns either zero or a positive number, so we rely on the con-
version of nonzero values to true and zero to false. It would arguably be
clearer to be more explicit about what we are doing,

if (count(lw.begin(), lw.end(), w) != 0) ...

and some programmers write it that way, but it’s common to rely on
the implicit conversion, as in the original example.

Compared to that original code, using find is slightly more compli-
cated, because you have to test find’s return value against the list’s
end iterator:

if (find(lw.begin(), lw.end(), w) != lw.end()) {
... // found it

} else {
... // didn’t find it

}

For existence testing, the idiomatic use of count is slightly simpler to
code. At the same time, it’s also less efficient when the search is suc-
cessful, because find stops once it’s found a match, while count must
continue to the end of the range looking for additional matches. For
most programmers, find’s edge in efficiency is enough to justify the
slight increase in usage complexity.

Often, knowing whether a value is in a range isn’t enough. Instead,
you’ll want to know the first object in the range with the value. For
example, you might want to print the object, you might want to insert
something in front of it, or you might want to erase it. When you need
to know not just whether a value exists but also which object (or
objects) has that value, you need find:

list<Widget>::iterator i = find(lw.begin(), lw.end(), w);

if (i != lw.end()) {

... // found it, i points to the first one

} else {
... // didn’t find it

}

For sorted ranges, you have other choices, and you’ll definitely want
to use them. count and find run in linear time, but the search algo-
rithms for sorted ranges (binary_search, lower_bound, upper_bound, and
equal_range) run in logarithmic time.

3

The shift from unsorted ranges to sorted ranges leads to another shift:
from using equality to determine whether two values are the same to
using equivalence [2]. That’s because the count and find algorithms
both search using equality, while binary_search, lower_bound,
upper_bound, and equal_range employ equivalence.

To test for the existence of a value in a sorted range, use binary_search.
Unlike bsearch in the standard C library (and hence also in the stan-
dard C++ library), binary_search returns only a bool: whether the value
was found. binary_search answers the question, “Is it there?,” and its
answer is either yes or no. If you need more information than that,
you need a different algorithm.

Here’s an example of binary_search applied to a sorted vector:

vector<Widget> vw; // create vector, put
... // data into it, sort the
sort(vw.begin(), vw.end()); // data

Widget w; // value to search for
...

if (binary_search(vw.begin(), vw.end(), w)) {
... // w is in vw

} else {
... // it’s not

}

If you have a sorted range and your question is, “Is it there, and if so,
where is it?” you want equal_range, but you may think you want
lower_bound. I’ll discuss equal_range shortly, but first, let’s examine
lower_bound as a way of locating values in a range.

When you ask lower_bound to look for a value, it returns an iterator
pointing to either the first copy of that value (if it’s found) or to the
proper insertion location for that value (if it’s not). lower_bound thus
answers the question, “Is it there? If so, where is the first copy, and if
it’s not, where would it go?” As with find, the result of lower_bound
must be tested to see if it’s pointing to the value you’re looking for.
Unlike find, you can’t just test lower_bound’s return value against the
end iterator. Instead, you must test the object lower_bound identifies
to see if that’s the value you want.

Many programers use lower_bound like this:

vector<Widget>::iterator i = lower_bound(vw.begin(), vw.end(), w);

if (i != vw.end() && *i == w) { // make sure i points to an object;
// make sure the object has the
// correct value; this has a bug!

4

... // found the value, i points to the
// first object with that value

} else {
... // not found

}

This works most of the time, but it’s not really correct. Look again at
the test to determine whether the desired value was found:

if (i != vw.end() && *i == w) ...

This is an equality test, but lower_bound searched using equivalence.
Most of the time, tests for equivalence and equality yield the same
results, but as note [2] demonstrates, it’s not that hard to come up
with situations where equality and equivalence are different. In such
situations the code above is wrong.

To do things properly, you must check to see if the iterator returned
from lower_bound points to an object with a value that is equivalent to
the one you searched for. You could do that manually, but it can get
tricky, because you have to be sure to use the same comparison func-
tion that lower_bound used. In general, that could be an arbitrary
function (or function object). If you passed a comparison function to
lower_bound, you’d have to be sure to use the same comparison func-
tion in your hand-coded equivalence test. That would mean that if you
changed the comparison function you passed to lower_bound, you’d
have to make the corresponding change in your check for equivalence.
Keeping the comparison functions in sync isn’t rocket science, but it
is another thing to remember, and I suspect you already have plenty
you’re expected to keep in mind.

There is an easier way: use equal_range. equal_range returns a pair of
iterators, the first equal to the iterator lower_bound would return, the
second equal to the one upper_bound would return (i.e., the one-past-
the-end iterator for the range of values equivalent to the one searched
for). equal_range, then, returns a pair of iterators that demarcate the
range of values equivalent to the one you searched for. A well-named
algorithm, no? (equivalent_range would be better, of course, but
equal_range is still pretty good.)

There are two important observations about equal_range’s return
value. First, if the two iterators are the same, that means the range of
objects is empty; the value wasn’t found. That observation is the key
to using equal_range to answer the question, “Is it there?” You use it
like this:

vector<Widget> vw;
...
sort(vw.begin(), vw.end());

typedef vector<Widget>::iterator VWIter; // convenience typedefs
typedef pair<VWIter, VWIter> VWIterPair;

5

VWIterPair p = equal_range(vw.begin(), vw.end(), w);

if (p.first != p.second) { // if equal_range didn’t return
// an empty range...

... // found it, p.first points to the
// first one and p.second
// points to one past the last

} else {

... // not found, both p.first and
// p.second point to the

} // insertion location for
// the value searched for

This code uses only equivalence, so it is always correct.

The second thing to note about equal_range’s return value is that the
distance between its iterators is equal to the number of objects in the
range, i.e., the objects with a value equivalent to the one that was
searched for. As a result, equal_range not only does the job of find for
sorted ranges, it also replaces count. For example, to locate the Wid-
gets in vw with a value equivalent to w and then print out how many
such Widgets exist, you could do this:

VWIterPair p = equal_range(vw.begin(), vw.end(), w);

cout << "There are " << distance(p.first, p.second)
<< " elements in vw equivalent to w.";

So far, our discussion has assumed we want to search for a value in a
range, but sometimes we’re more interested in finding a location in a
range. For example, suppose we have a Timestamp class and a vector of
Timestamps that’s sorted so that older timestamps come first:

class Timestamp { ... };

bool operator<(const Timestamp& lhs, // returns whether lhs
const Timestamp& rhs); // precedes rhs in time

vector<Timestamp> vt; // create vector, fill it with
... // data, sort it so that older
sort(vt.begin(), vt.end()); // times precede newer ones

Now suppose we have a special timestamp, ageLimit, and we want to
remove from vt all the timestamps that are older than ageLimit. In this
case, we don’t want to search vt for a Timestamp equivalent to ageLimit,
because there might not be any elements with that exact value.
Instead, we need to find a location in vt: the first element that is no
older than ageLimit. This is as easy as easy can be, because
lower_bound will give us precisely what we need:

Timestamp ageLimit;
...

6

vt.erase(vt.begin(), lower_bound(vt.begin(), // eliminate from vt all
vt.end(), // objects that precede
ageLimit)); // ageLimit’s value

If our requirements change slightly so that we want to eliminate all
the timestamps that are at least as old as ageLimit, we need to find the
location of the first timestamp that is younger than ageLimit. That’s a
job tailor-made for upper_bound:

vt.erase(vt.begin(), upper_bound(vt.begin(), // eliminate from vt all
vt.end(), // objects that precede
ageLimit)); // or are equivalent

// to ageLimit’s value

upper_bound is also useful if you want to insert things into a sorted
range so that objects with equivalent values are stored in the order in
which they were inserted. For example, we might have a sorted list of
Person objects, where the objects are sorted by name:

class Person {
public:

...
const string& name() const;
...

};

struct PersonNameLess:
public binary_function<Person, Person, bool> {

bool operator()(const Person& lhs, const Person& rhs) const
{

return lhs.name() < rhs.name();
}

};

list<Person> lp;
...

lp.sort(PersonNameLess()); // sort lp using
// PersonNameLess

To keep the list sorted the way we desire (by name, with equivalent
names stored in the order in which they are inserted), we can use
upper_bound to specify the insertion location:

Person newPerson;

...

lp.insert(upper_bound(lp.begin(), // insert newPerson after
lp.end(), // the last object in lp
newPerson, // that precedes or is
PersonNameLess()), // equivalent to

newPerson); // newPerson

This works fine and is quite convenient, but it’s important not to be
misled by this use of upper_bound into thinking that we’re magically

7

looking up an insertion location in a list in logarithmic time. We’re not.
Because we’re working with a list, the lookup takes linear time, but it
performs only a logarithmic number of comparisons.

Up to this point, I have considered only the case where you have a
pair of iterators defining a range to be searched. Often you have a con-
tainer, not a range. In that case, you must distinguish between the
sequence and associative containers. For the standard sequence con-
tainers (vector, string, deque, and list), you follow the advice I’ve out-
lined in this Item, using the containers’ begin and end iterators to
demarcate the range.

The situation is different for the standard associative containers (set,
multiset, map, and multimap), because they offer member functions for
searching that are generally better choices than the STL
algorithms [3]. Fortunately, the member functions usually have the
same names as the corresponding algorithms, so where the foregoing
discussion recommends you choose algorithms named count, find,
equal_range, lower_bound, or upper_bound, you simply select the same-
named member functions when searching associative containers.
binary_search calls for a different strategy, because there is no member
function analogue to this algorithm. To test for the existence of a value
in a set or map, use count in its idiomatic role as a test for member-
ship:

set<Widget> s; // create set, put data into it
...

Widget w; // w still holds the value to search for
...

if (s.count(w)) {

... // a value equivalent to w exists
} else {

... // no such value exists
}

To test for the existence of a value in a multiset or multimap, find is gen-
erally superior to count, because find can stop once it’s found a single
object with the desired value, while count, in the worst case, must
examine every object in the container.

However, count’s role for counting things in associative containers is
secure. In particular, it’s a better choice than calling equal_range and
applying distance to the resulting iterators. For one thing, it’s clearer:
count means “count.” For another, it’s easier; there’s no need to create
a pair and pass its components to distance. For a third, it’s probably a
little faster.

8

Given everything we’ve considered in this Item, where do we stand?
The following table says it all.

In the column summarizing how to work with sorted ranges, the fre-
quency with which equal_range occurs may be surprising. That fre-
quency arises from the importance of testing for equivalence when
searching. With lower_bound and upper_bound, it’s too easy to fall
back on equality tests, but with equal_range, testing only for equiva-
lence is the natural thing to do. In the second row for sorted ranges,
equal_range beats out find for an additional reason: equal_range runs in
logarithmic time, while find takes linear time.

For multisets and multimaps, the table lists both find and lower_bound
as candidates when you’re looking for the first object with a particular
value. find is the usual choice for this job, and you may have noticed

What You Want
to Know

Algorithm to Use Member Function to Use

On an
Unsorted

Range

On a
Sorted Range

With a
set or map

With a
multiset or
multimap

Does the desired
value exist?

find binary_search count find

Does the desired
value exist? If
so, where is the
first object with
that value?

find equal_range find
find or

lower_bound
(see article)

Where is the
first object with
a value not pre-
ceding the
desired value?

find_if lower_bound lower_bound lower_bound

Where is the
first object with
a value succeed-
ing the desired
value?

find_if upper_bound upper_bound upper_bound

How many
objects have the
desired value?

count equal_range count count

Where are all
the objects with
the desired
value?

find
(iteratively)

equal_range equal_range equal_range

9

that it’s the one listed in the table for sets and maps. For the multi con-
tainers, however, find is not guaranteed to identify the first element in
the container with a given value if more than one is present; its char-
ter is only to identify one of those elements. If you really need to find
the first object with a given value, you’ll want to employ lower_bound,
and you’ll have to manually perform the second half of the equiva-
lence test. (You could avoid the manual equivalence test by using
equal_range, but calling equal_range is more expensive than calling
lower_bound.)

Selecting among count, find, binary_search, lower_bound, upper_bound,
and equal_range is easy. Choose the algorithm or member function
that offers you the behavior and performance you need and that
requires the least amount of work when you call it. Follow that advice
(or consult the table), and you should never get confused.

Notes and References

[1] Scott Meyers, Effective STL: 50 Specific Ways to Improve Your
Use of the Standard Template Library, Addison-Wesley, 2001,
ISBN 0-201-74962-9. This article is based on Item 45 in Effec-
tive STL.

[2] Two objects are equivalent if neither precedes the other in some
sort order of interest. Often, equivalent values are equal, but
not always. For example, the strings “STL” and “stl” are equiva-
lent in a case-insensitive sort, but they are certainly not equal.
For details on the distinction between equivalence and equality,
consult any good reference on the STL. In Effective STL, the is-
sue is examined in Item 19.

[3] You’ll find a justification for this claim in Item 44 of Effective
STL. That Item is available on-line at http://www.awl.com/cseng/
titles/0-201-74962-9/item44-2.pdf.

About the Author

Scott Meyers is one of the world’s foremost authorities on C++; Effec-
tive STL is his third C++ book. He has a Ph.D. in Computer Science
from Brown University, sits on the technical advisory boards of sev-
eral companies, and provides training and consulting services to cli-
ents worldwide. His web site is http://www.aristeia.com/.

