I’'ll start with the punchline: If you're
writing a function that can be implemented
as either a member or as a non-friend non-
member, you should prefer to implement it
as a non-member function. That decision
increases class encapsulation. When you
think encapsulation, you should think non-
member functions.

Surprised? Read on.

Background

When I wrote the first edition of
Effective C++ 1n 1991 [1], I examined the
problem of determining where to declare a
function that was related to a class. Given a
class C and a function f related to C, I
developed the following algorithm:

if (f needs to be virtual)
make f a member function of C;
else if (f is operator>> or
operator<K)
{
make f a non-member function;
if (f needs access to non-public
members of C)
make f a friend of C;

}
else if (f needs type conversions

on its Teft-most argument)

{
make f a non-member function:

if (f needs access to
non-public members of C)
make f a friend of C: &

]
else

make f a member function of C;

This algorithm served me well
through the years, and when I revised
Effective C++ for its second edition in

44

Scott Meyers

How Non-Member Functions
Improve Encapsulation

When it comes to encapsulation, sometimes less

1997 [2], I made no changes to this part
of the book.

In 1998, however, I gave a presentation
at Actel, where Arun Kundu observed that
my algorithm dictated that functions should
be member functions even when they could
be implemented as non-members that used
only C’s public interface. Is that really what
I meant. he asked me? In other words, if T
could be implemented as a member func-
tion or a non-friend non-member function,
did I really advocate making it a member
tunction? I thought about it for a moment,
and I decided that that was not what I

meant. [therefore modified the algorithm
to look like this [3]:

if (f needs to be virtual)
make ¥ a member function of C;
else if (f is operator>> or
operator<K)
{
make T a non-member function;
if (f needs access to non-public
members of C)
make f a friend of C;
}
efse if (f needs type conversions
on its left-most argument)
{
make f a non-member function;
it (f needs access to non-public
members of C)
make f a friend of C;
}
else if (f can be implemented via C's
public interface)
make ¥ a non-member function;
else
make f a member function of C;

Since then, I've been battling program-
mers who’ve taken to heart the Iesson that
being object-oriented means putting func-
tions inside the classes containing the data on
which the functions operate. After all, they
tell me, that’s what encapsulation is all about.

They are mistaken.

e C/C++ Users Journal e www.cuj.com e

Is more.

Encapsulation

Encapsulation is a means, not an end.
There’s nothing inherently desirable about
encapsulation. Encapsulation 1s useful only
because it yields other things in our soft-
ware that we care about. In particular, it
yields flexibility and robustness. Consider
this struct, whose implementation I think
we 1l all agree 1s unencapsulated:

struct Point {
int X, Y:
s

The weakness of this struct 1s that it’s
not flexible in the face of change. Once
clients started using this struct, it would,
practically speaking, be very hard to
change it; too much client code would be
broken. If we later decided we wanted to
compute X and Yy instead of storing those
values, we’d probably be out of luck. We’'d
be similarly thwarted if we decided a supe-
rior design would be to look X and y upin a
database. This 1s the real problem with poor
encapsulation: it precludes future imple-
mentation changes. Unencapsulated soft-
ware 1S inflexible, and as a result, it’s not
very robust. When the world changes, the
software 1s unable to gracefully change
with it. (Remember that we're talking here
about what is practical, not what is possi-
ble. It’s clearly possible to.change Struct
Point, but if enough code is dependent on
it 1n its current form, it’s not practical.)

Now consider a class with an interface
that offers clients capabilities similar to

Smtt Meyer:s 13 a recogmzed authc:nty on
- C++; he provides consulting services to clients
~ worldwide. He is the author of Effective C++,
;fi__:.Secand Edman (Addlsm-Wesley, 1998), More

~ Effective C++ (Addison-Wesley, 1996), and
 Effective C++ CD (Addlsun-Weslﬁy, 1999).
~ Scott received his Ph.D. in Computer Smence |
'fffrem Bmwn Umvermty in 1993 -

February 2000

Powe
Tools

for measuremen

TR

Papi T

L

National Instruments delivers
the measurement tools to
convert your Visual Basic or
Visual C/C++ compiler into a
high-performance
Measurement Ready"
development environment.

Enhance your programming
capabilities with:
¢Data acquisition (DAQ)
e Analysis

e Graphing

VSt id Certified

Snlutiu.rn: Provider

Download your FREE
evaluation tools today

VNATIONAL

INSTRUMENTS

www.ni.com/tools R
(800) 452-6202

Fax: (512) 683-9300 e info@ni.com

£ Copyright 1929 National Instruments Corporation. All rights resened. Product and
company names listed are trademarks or trade names of their respective companies.

46

those afforded by the struct above, but with
an encapsulated implementation:

class Point {
public:
int getXValue() const:
int getYValue() const;
void setXValue(int newXValue);
void setYValue(int newYValue);

private:
= /] whatever...

This interface supports the implementa-
tion used by the struct (storing X and y as
1nts), but it also affords alternative imple-
mentations, such as those based on compu-
tation or database lookup. This is a more
flexible design, and the flexibility makes the
resulting software more robust. If the class’s
implementation 1s found lacking, it can be
changed without requiring changes to client
code. Assuming the declarations of the pub-
lic member functions remain unchanged,
client source code is unaffected. (If a suit-
able implementation has been adopted [4],
clients need not even recompile.)

Encapsulated software 1s more flexible
than unencapsulated software, and, all
other things being equal, that flexibility
makes it the superior design choice.

Degrees of Encapsulation

The class above doesn’t fully encapsu-
late its implementatitm. If the implementa-
tion changes, there’s still code that might
break. In particular, the member functions
of the class might break. In all likelihood,
they are dependent on the particulars of the
data members of the class. Still, it seems
clear that the class is more encapsulated
than the struct, and we’d like to have a way
to state this more formally.

It’s easily done. The reason the class is
more encapsulated than the struct is that
more code might be broken if the (public)
data members in the struct change than if
the (private) data members of the class
change. This leads to a reasonable approach
to evaluating the relative encapsulations of
two 1mplementations: if changing one
might lead to more broken code than would
the corresponding change to the other, the
former is less encapsulated than the latter.
This definition i1s consistent with our intu-
ition that if making a change is likely to
break a lot of code, we're less likely to
make that change than we would be to
make a different change that affected less
code. There is a direct relationship between

e C/C++ Users Journal e www.cuj.com e

Scott Meyers

encapsulation (how much code might be
broken 1t something changes) and practical
flexibility (the likelihood that we’ll make a
particular change).

An easy way to measure how much code
might be broken is to count the functions
that might be affected. That is, if changing
one implementation leads to more poten-
tially broken functions than does changing
another implementation, the first imple-
mentation is less encapsulated than the sec-
ond. If we apply this reasoning to the struct
above, we see that changing its data mem-
bers may break an unknowably large num-
ber of functions — every function that uses
the struct. In general, we can’t count how
many functions this 1s, because there’s no
way to locate all the code that uses a partic-
ular struct. This 1s especially true for library
code. However, the number of functions
that might be broken if the class’s data
members change 1s easy to determine: it’s
all the functions that have access to the pri-
vate part of the class. That’s just four func-
tions (assuming none are declared in the
private part of the class), and we know that
because they're all conveniently listed in
the class definition. Since they’re the only
functions that have access to the private
parts of the class, they’re the only functions
that can be affected if those parts change.

Encapsulation and Non-
Member Functions

We’ve now seen that a reasonable way to
cgauge the amount of encapsulation in a
class 1s to count the number of functions
that might be broken if the class’s imple-
mentation changes. That being the case, it
becomes clear that a class with n member
functions 1s more encapsulated than a class
with n+1 member functions. And that
observation 1s what justifies my argument
for preferring non-member non-friend
functions to member functions: if a func-
tion T could be implemented as a member
function or as a non-friend non-member
function, making it a member would
decrease encapsulation, while making it a
non-member wouldn’t. Since functionality
1S not at issue here (th_,eh fiinctionality of f is
available to class clients regardless of
where f is located), we naturally prefer the
more encapsulated design.

It’s important that we’re trying to choose
between member functions and non-friend
non-member functions. Just like member
functions, friend functions may be broken
when a'class’s implementation changes, so

February 2000

How Non-Member Functions Improve Encapsulation

the choice between member functions and friend functions is prop-
erly made on behavioral grounds. Furthermore, we now see that the
common claim that ““friend functions violate encapsulation™ is not
quite true. Friends don’t violate encapsulation, they just decrease it
— 1n exactly the same manner as member functions.

This analysis applies to any kind of member functions, including
static ones. Adding a static member function to a class when its
functionality could be implemented as a non-friend non-member
decreases encapsulation by exactly the same amount as does adding
a non-static member function. One implication of this is that it’s
generally a bad idea to move a free function into a class as a static
member just to show that it’s related to the class. For example, if I
have an abstract base class for Widgets and then use a factory func-
tion [4,5,6] to make it possible for clients to create Widgets, the fol-
lowing is a common, but inferior way to organize things:

// a design less encapsulated than it could be
class Widget {
// all the Widget stuff; may be
// public, private, or protected

public:

// could also be a non-friend non-member
static Widget* make(/* params */);
)

A 7 .
eV
Re:::?:\ e Cc ol fc e [o
Fea‘u{eﬁ‘.
& Kerax DocuTech 135 [A)] 1st Floor, Printer Ro... |] Ready
' HP LaserJet Il PS 2nd Floor, Room 228 | ¥l Ready
~[3 TREECTLCPP |Sample Program 7| Prirting
-[@ TREEXRC 7| Ready
~[3] BONUS.DOC &dditional document... |] Ready 3’
: 2nd Floor. Room 206
Most urgent output Not ready ;

b TR L et e e e T T
T g =TI T T e
e AE=E "'"I'ﬂfr'l-' ST FaEialis ='""-'-':r;'-".::ll'frl'r-'._'-_l?."-'"i'-'l-j'!'_-'-'iu_- T?-.-'.l

= e e =]
TRl g o o p e Ly b BT 1 i L FAT Sl Tt e e e e] s e b oty i s i S
| e] P e Vil T e e i I e e fe e S e

=orad=]l, Vol

43 e C/C++ Users Journal ® www.cuj.com e

Scott Meyers

A better design is to move make out of Widget, thus increasing
the overall encapsulation of the system. To show that Widget and
make are related, the proper tool is a namespace:

// a more encapsulated design
namespace WidgetStuff {

class Widget { s}

Widget* make(/* params */);
i

Alas, there 1s a weakness to this design when templates enter the
picture. For details, see the accompanying sidebar.

Syntax Issues

If you're like many people with whom I've discussed this issue,
you're likely to have reservations about the syntactic implications of
my advice that non-friend non-member functions should be pre-
ferred to member functions, even if you buy my argument about
encapsulation. For example, suppose a class Wombat supports the
tunctionality of both eating and sleeping. Further suppose that the
eating functionality must be implemented as a member function, but
the sleeping functionality could be implemented as a member or as
a non-friend non-member function. If you follow my advice from
above, you’d declare things like this:

class Wombat {
public:
void eat(double tonsToEat);

¥

void sleep(Wombat& w, double hoursToSnooze);

That would lead to a syntactic inconsistency for class clients,
because for a Wombat w, they’d write

Ww.eat(.564);

to make it eat, but they would write

sleep(w, 2.57);

to make 1t sleep. Using only member functions, things would look
much neater:

class Wombat {
public:
void eat(double tonsToEat);
void sTeep(double hoursToSnooze);

3

w.eat(.564);
Ww.sleep(2.57);

Ah, the uhjfonnity of it all! But this unifﬂrﬂﬁty 1S misleading,
because there are more functions in the world than are dreamt of by
your philosophy.

To put it bluntly, non-member functions happen. Let us continue
with the Wombat example. Suppdse you write software to model
these fetching creatures, and imagine that one of the things you fre-
quently need your Wombats to do is sleep for precisely half an hour.
Clearly, you could litter your code with calls to w.Sleep(.5), but

February 2000

Scott Meyers

that would be a lot of . 5s to type, and at any rate, what if that magic
value were to change? There are a number of ways to deal with this
1ssue, but perhaps the simplest is to define a function that encapsu-
lates the details of what you want to do. Assuming you’re not the
author of Wombat, the function. will necessarily have to be a non-
member, and you’ll have to call it as such:

// might be inline, but ft doesn't matter
void nap(Wombat& w) { w.sleep(.5); }

k

Wombat w;

nap(w);

And there you have it, your dreaded syntac-
tic inconsistency. When you want to feed
your wombats, you make member function
calls, but when you want them to nap, you
make non-member calls.

If you reflect a bit and are honest with
yourself, you’ll admit that you have this
alleged inconsistency with all the non-
trivial classes you use, because no class
has every function desired by every
client. Every client adds at least a few
convenience functions of their own. and
these tunctions are always non-members.

C++ programers are used to this, and
they think nothing of it. Some calls use

GET INFORMATION
ABOUT ANY TOOL
OR PRODUCT

DISPLAYED IN THIS
ISSUE - INSTANTLY!

Check out:

wWwWw.cuj.com

and select:

R A R A T o
b L A e
.-,--.;.-,-,-.;'._-.;.;:;:-,-'-k;*-.'-'-:-:-:-.-:-::E -.-,.-.-,..-.-.-n-.E,.-.-E.-.-.-':H.---".!.': oS
R S :

e el e el e s e
s

.

le_vel;}pment Tool *

S

All tools are categorlzed by
function for QUICK access!

FIND THE TOOLS
YOU NEED - NOW!

E/ e Users Journal

Advanced Solutions for C/C++ Prosrammers

» Over

How Non-Member Functions Improve Encapsulation

member syntax, and some use non-member syntax. People just
look up which syntax is appropriate for the functions they want
to call, then they call them. Life goes on. It goes on especially in
the STL portion of the Standard C++ library, where some algo-
rithms are member functions (e.g., S1ze), some are non-member
functions (e.g., unique), and some are both (e.g., find). Nobody
blinks. Not even you. . .

,p

Interfaces and Packaging

Herb Sutter has explained that the “interface” to a class (roughly
speaking, the functionality provided by the class) includes the non-
member functions related to the class, and he’s shown that the name
lookup rules of C++ support this meaning of ““interface” [7,8]. This

One edltmw
environment ‘%uppurtmﬂ -
the latest internet programming

= languages as well as workhorses like C++ and
De]ph] (more than 40 languages supported). Advanced
web editing and site management technology, mtefrral =P
and gemote telnet compilation give
youthie cutting edge tools you
need to dev elop for the online
world! There is much more.
cheek out our website for details
on the latest release of Multi-Edit!

Try Multi-Edit Tocj_ay, Free!

www.mul_tiedit;cnm
The Editor that Thinks Like You Do

American Cybernetics Inc.
Sales: ~ (800) 899-0100

Here are jllSt a few of the latest features: - | S i (480) 968-1945
* Enhanced embedded scripting support |
* Advanced HTMIL. 4.0 support and online reference
* Improvements to the project manager, hex

editing, collapsing and VCS support

* Visual Studio integration

a dozen new languages supported

* Color Printing

Multi-Edit is a trademark of America
30-day guarantee. Other products

Fax: (480) 966-1654
sales@multiedit.com

Outside the US & Canada contact:
Soft/Export

WWW. uutlupt]rt com
info@softexport.com
Enﬁrnatmual Inquiries: +353 1 294 2121
UK: 0800 973098

France: 0800 905823

Germany: 0130 860341

= s*t _a AERIC AN

n Cybernetics, Inc., and is backed by an unconditional
are the trademarks of their respect [e publishers

February 2000 ® C/C++ Users Journal e www.cuj.com e 49

How Non-Member Functions Improve Encapsulation

is wonderful news for my ‘“‘non-friend non-members are better than
members’ argument, because i1t means that the decision to make a
class-related function a non-friend non-member instead of a mem-
ber need not even change the interface to that class! Moreover, the
liberation of the functions in a class’s interface from the confines of
the class definition leads to some wonderful packaging flexibility
that would otherwise be unavailable. In particular, it means that the
interface to a class may be split across multiple header files.

Suppose the author of the Wombat class discovered that Wombat
clients often need a number of convenience functions related to eat-
ing, sleeping, and breeding. Such convenience functions are by def-
inition not strictly necessary. The same functionality could be
obtained via other (albeit more cumbersome) member function
calls. As a result, and in accord with my advice in this article, each
convenience function should be a non-friend non-member. But sup-
pose the clients of the convenience functions for eating rarely need-
ed the convenience functions for sleeping or breeding. And suppose
the clients of the sleeping and breeding convenience functions also
rarely needed the convenience functions for eating and, respective-
ly, breeding and sleeping.

Rather than putting all Wombat-related functions into a single head-
er file, a preferable design would be to partition the Wombat interface
across four separate headers, one for core Wombat functionality (pri-
marily the class definition), and one each for convenience functions
related to eating, sleeping, and breeding. Clients then include only the
headers they need. The resulting sottware 1s not only clearer, it also
contains fewer gratuitous compilation dependencies [4.9]. This multi-
ple-header approach was adopted for the standard library. The contents

- The RTOS of Champions

HARD REAL-TIME!

: Tluulﬂ(

l(ernel 2.2 Instali CD
10-20 ysec latency
Imlustrlal support
- SMP& rnsm

e x

s =

e Fe

e I
i e ;
i - -
=)
ﬂ | '
LT = a 0 0 n =
e G
o s
i S 2 I 1
=] =2 s L
i S _:.‘-*
y
:
s
> O
g

Zenfrdpic.:
Computing

*:'

i
‘E
E
t

\

o0 | ® C/C++ Users Journal

Scott Meyers

of namespace Std are spread across 50 different headers. Clients
#include the headers declaring the parts of the library they care about,
and they 1gnore everything else.

In addition, this approach 1s extensible. When the declarations for
the functions making up a class’s interface are spread across multiple
header files, it becomes natural for clients creating application-specific

Templates and Factory
Functions at Namespace
Scope

In the main amcle I argue that static member functions should
be made non-members whenever that is possible, because that
increases dags encapsulation. I consider these two possible imple-
mentations for a factory function:

// the less encapsulated design
class Widget {

pubTic:
static Widget* make(/* params */);
= |

// the more encapsulated design
namespace WidgetStuff {
class Widget { ... };
Widget* make(/* params */);
i |

Andrew Koenig pointed out that the first design (where make is
static inside the class) enables one to write a template function that
invokes make without knowing the type of what is being made:

temp1ate<typename 1>

v01d doSometh1ng(/* params £/)

_(: .
//.invﬁke T's'factﬁry functian;f
L 7pt = [:Mgkel /* params &/),

This isn’t postle with the namespace -based design, because
there’s no way from 11151(1&: a template to identify the namespace in
which a type parameter is located That is, there’s no way to figure
out what 777 is 111 the pseudocode below

temp]ate<typename e
void doSometh1ng(/* params */ J

// there’s no way tu know T S cunta1n1ng namespace!
T *pt = ?22::make(/* params */)

For factory functions and similar functions which can be
given uniform names, this means that maximal class encapsula-
tion and maximal template utlhty are at odds. In such cases, you
have to decide ‘which is more important and cater to that.
Howeve:r, for static member functions with class-specific names,
the template:i-s_sue fails_ tq'.ari-se, and encapsulation can again
assume precedence. 4 . -

February 2000

® www.cuj.com @

SPECIAL

OFFER-
CALL
- NOw!

Zero to
C/C++

1N NO
time.

Use industry-standard MATLAB to design,

develop, and refine your applications. Then
use the C/C++ Compiler Suite to convert

them into standalone C or C++ code.

Marias C/C++ Compiler Svite includes:

o MATLAB Compiler — automatically generates
C/C++ code from programs written in MATLAB

o C/C++ Math Library — contains 350 MATLAB
math functions accessible from C/C++

o C/C++ Graphics Library — embeds MATLAB
graphics and GUIs in your C/C++ code.

Compile —mmmmanss

complete — _

MATLAB

applications, | =2

Rt

like this
signal
proceisig
example, into * -

C and C++ code.
Information and demos on the Web.

For product information, or to buy online

o i
r

now, visit www.mathworks.com/cgj.
The
MATH

s MATLAB

508-647-7000 ® www.mathworks.com /ccj

52

sets of convenience functions to cluster those
functions into a new header file and to
jfinclude that file as appropriate. In other
words, to treat the application-specific conve-
nience functions just like they treat the conve-
nience functions provided by the author of the
class. This is as it should be. After all, they're
all just convenience functions.

Minimalness and

Encapsulation

In Effective C++, I argued for class
interfaces that are complete and minimal
[10]. Such interfaces allow class clients to
do anything they might reasonably want to
do, but classes contain no more member
functions than are absolutely necessary.
Adding functions beyond the minimum
necessary to let clients get their jobs done, 1
wrote, decreases the class’s comprehensi-
bility and maintainability, plus it increases
compilation times for clients. Jack Reeves
has written that the addition of member
functions beyond those truly required vio-
lates the open/closed principle, yields fat
class interfaces, and ultimately leads to
software rot [11]. That’s a fair number of
arguments for minimizing the number of
member functions in a class, but now we
have an additional reason: failure to do so
decreases a class’s encapsulation.

Of course, a minimal class interface is
not necessarily the best interface. 1
remarked in Effective C++ that adding
functions beyond those truly necessary may
be justitiable if it significantly improves the
performance of the class, makes the class
easier to use, or prevents likely client errors
[10]. Based on his work with various
string-like classes, Jack Reeves has
observed that some functions just don’t
“feel” right when made non-members,
even 1if they could be non-friend non-mem-
bers [12]. The “‘best’ interface for a class
can be tfound only by balancing many com-
peting concerns, of which the degree ot
encapsulation is but one.

Still, the lesson of this article should be
clear. Conventional wisdom notwithstand-
ing, use of non-friend non-member func-
tions improves a class’s encapsulation, and a
preference for such functions over member

* functions makes it easier to design and

develop classes with interfaces that are
complete and minimal (or close to mini-
mal). Arguments about the naturalness of
the resulting calling syntax are generally
unfounded, and adoption of a predilection
for non-friend non-member functions leads

e C/C++ Users Journal e www.cuj.com e

Scott Meyers

to packaging strategies for a class’s inter-
face that minimize client compilation
dependencies while maximizing the number
of convenience functions available to them.

[t’s time to abandon the traditional, but
inaccurate, ideas of what it means to be
object-oriented. Are you a true encapsula-
tion believer? If so, I know you’ll embrace
non-friend non-member functions with the
fervor they deserve. 1

Acknowledgements

Thanks to Arun Kundu for asking the
question that led to this article. Thanks also
to Jack Reeves, Herb Sutter, Dave
Smallberg, Andrei Alexandrescu, Bruce
Eckel, Bjarne Stroustrup, and Andrew
Koenig for comments on pre-publication
drafts that weren’t as good as they should
have been. (That’s why they were drafts.)
Finally, great thanks to Adela Novak for
organizing the C++ seminars in Lucerne
(Switzerland) that led to the many hours on
planes and trains that allowed me to write
the initial draft of this article.

Notes and References

[1] Scott Meyers. Ejfective C++: 50
Specific Ways to Improve Your
Programs and Designs, First Edition
(Addison-Wesley, 1991), Item 19.

[2] Scott Meyers. Effective C++, Second
Edition (Addison-Wesley, 1993).

[3] The algorithm remains unchanged in
current printings of Effective C++,
because I’d have to also add the requisite
reasoning (this article), and making such
a substantial change to a book already in
production simply 1sn’t practical.

4] Effective C++, Item 34.

[5] Erich Gamma et al. Design Patterns,
Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995). Also
known as the GOF or “Gang of Four”
book.

[6] James O. Coplien. Advanced C++:
Programming Styles and Idioms
(Addison-Wesley, 1991).

| 7] Herb Sutter. “*Sutter’s Mill: What’s 1n a
Class?” C++ Report, March 1998.

[8] Herb Sutter. Exceptional C++
(Addison-Wesley, 1999), Items 31-34.

9] John Lakos. Large-Scale C++ Software
Design (Addison-Wesley, 1996).

10] Effective C++, Item 18.

WG Jack Reeves. “(B)leading Edge: How
About Namespaces?,” C++ Report,
April 1999.

[12] Jack Reeves. Personal communication.

February 2000

	ScannedFile0003
	ScannedFile0004
	ScannedFile0005
	ScannedFile0006
	ScannedFile0007
	ScannedFile0008

