
54 MICROSOFT INTERNET developer October 1999

The powers of HTML
aren’t limited to

standard Web sites.
You can use HTML
techniques to make

book-based data
easier to navigate

and read.

Scott Meyers

This article assumes
you’re familiar with:

This article assumes
you’re familiar with:

HTML

October 1999 MICROSOFT INTERNET developer 55

What should a book on a CD-ROM look
like? How should it behave? When I began
to think seriously about putting my book,
Effective C++, onto a CD in the spring of 1998,
I didn’t know. From what I could tell by talk-
ing to producers and consumers of existing
CD books, nobody else did either.

One thing I did know was that HTML was
my publishing medium of choice. That meant
putting a book on a CD boiled down to de-
veloping a Web site. I also knew that I disliked
the design of most Web sites I’d seen. As you’ll see, the design
of the Effective C++ CD was driven at least as much by what
it should not be as by what it should.

My collaborators and I came up with several browsing
innovations for the CD. Most ideas are as applicable to Inter-
net-based Web sites as they are to sites published on CD,
but some address CD-specific problems. Some innovations
grew out of the special demands made by book-length docu-
ments, and these innovations, too, are as applicable to tradi-
tional Web sites as they are to Web sites masquerading as
small plastic discs.

The first innovation I’ll examine here is user control over
image sizes. Web browsers give users control over the display
font size, but they typically give users no control over the
size of images. The Effective C++ CD allows users to dyna-
mically change image sizes to suit their monitor size, graph-
ics resolution, and personal preferences.

Another innovation is user control over navigation area
sizes. Most Web sites have an area reserved for navigational
aids, but the size of the material in this area is typically fixed.
On the Effective C++ CD, users can control the size of the
material in the navigation area similarly to the way they con-
trol the size of images.

My CD also offers user control over file sizes. How should
a long document like a book be broken down into individual
HTML files? There are advantages and disadvantages to ev-
ery solution. The Effective C++ CD exploits the fact that CDs
are large enough to hold many
copies of a book; three copies
of the content are provided
(each broken down into differ-
ent file sizes), and users dy-
namically choose the size they
prefer.

Another novelty in the CD is
p a r a g r a p h - s p e c i f i c
bookmarking. Most Web sites
support the creation of book-
marks at only the top of a page
and at major headings within a

page. This level of granularity—akin to the
index of a book listing only the chapter where
a topic is discussed—is inadequate. The Ef-
fective C++ CD addresses this weakness by
allowing any paragraph on the CD to be
bookmarked. In addition, each paragraph’s
unique URL is made easily available, so it’s
simple to link other HTML documents to any
specific paragraph on the CD.

The CD also offers more efficient search-
ing. Most HTML search engines do a poor

job of identifying where in a document a particular phrase
occurs. On the Effective C++ CD, searches identify each para-
graph on the CD that satisfies a query.

Finally, the CD preserves link validity. URLs on the
Internet are notoriously unstable, but CDs are read-only,
hence not updatable. Each link to the Internet on the Effec-
tive C++ CD goes indirectly through an online table of URLs,
so if a URL changes, only the online table needs to be modi-
fied; the CD itself remains unchanged.

Each innovation is discussed in more detail throughout
this article. To avoid confusion, I should explain that the Ef-
fective C++ CD actually contains two of my books, Effective
C++ (second edition) and More Effective C++.

User Control Over Image Sizes
It has always bothered me that browsers bend over back-

wards to give you control over how text is displayed, but when
it comes to images, you’re at the mercy of the Web site de-
signer. Too many Web sites are designed for people browsing
at 640×480 resolution, leading to truly indecipherable graph-
ics on my monitor, which happens to run at 1280×1024 reso-
lution. (Soon I hope to switch to 1600×1200 resolution. Life’s
too short to peer through a keyhole any smaller than it has
to be.) Other sites err in the opposite direction, posting enor-
mous images that take a long time to load and, once loaded,
dwarf the accompanying text.

One of the design goals for the Effective C++ CD was for it

Figure 1: A Selection of Image Sizes

56 MICROSOFT INTERNET developer October 1999

to look good on monitors from 12 to 21 inches in size (laptops
to desktops) at resolutions from 800×600 to 1600×1200 pix-
els. Furthermore, the definition of “looking good” was left to
the discretion of the viewer because what looks good to bright
eyes in the morning might not look so good to bleary eyes at
the end of the day. The ideal solution would be for browsers
to take large images and then automatically scale them up or
down in some user-defined manner, but browsers don’t gen-
erally offer this capability.

To deal with this problem, each image on the CD comes
in five different sizes, and users can dynamically change their
preferred size at any time. Figure 1 shows three of the five sizes
(smallest, medium, largest) available for the image from page
172 of the Effective C++ book (including a bit of text).

When a user requests a different image size, the change
occurs immediately; there is no need to reload the document.
Thus, it’s practical for users to change image sizes depending
on the specifics of the image, for example how much detail is
present in the image itself.

User Control Over Navigation Area Sizes
As with images, Web site designers often adhere to the one-

size-fits-all philosophy for navigation areas. In fact, Web site
navigation areas frequently are images. An important differ-
ence is that the content of a navigation area is often relatively
static. Once you know where the buttons on a navigation bar
are located, you might well want to reduce the size of the navi-
gation area to make more browser space available for con-

tent. Hence, it’s reasonable to want to reduce the size of the
navigation area even if you’d prefer to view images within
documents at a relatively large size.

The Effective C++ CD handles this by offering five differ-
ent sizes of navigation area. Users can adjust the size of that
area independently of the size of images displayed within
documents. For example, Figure 2 shows part of the intro-
duction to More Effective C++, each showing a different size
navigation area (smallest, medium, largest). In each case, the
image size is set to the medium setting.

Of course, this is not the only way to give users control
over the size of navigational aids. Microsoft HTML Help
uses a two-pane design for the client area that gives users
control over the location of the split between the navigation
and content areas, and Microsoft® Internet Explorer uses a
similar design to separate navigation (including searching,
favorites, and history) from document content, as shown in
Figures 3 and 4.

This is a nice design, but though it allows users to reduce
the area allotted for navigational aids, it affords no way for
them to scale down the space needed for the information in
the navigation area. Instead, the information is simply clipped

October 1999 MICROSOFT INTERNET developer 57

on the right and users must grapple with cumbersome hori-
zontal scroll controls (see Figure 5).

The design used on the Effective C++ CD allows users to
reduce the size of the navigation area while still displaying
all of the information within it.

Another ap-
proach to this
problem is to
make the navi-

gation area a window
in its own right in-
stead of a pane in the
content window. The
navigation window
can then be mini-
mized independent of the content window, thus maximizing
the display area for a document’s content while simulta-
neously making a full-size navigation area available by using
a single mouse operation. The Web site for Clarkson Univer-
sity (http://www.clarkson.edu) provides this kind of “remote control”
capability (see Figure 6).

Internet Explorer gives users the ability to toggle the vis-
ibility of the navigation pane. Un-
like the design employed by the
Effective C++ CD, however, nei-
ther the Clarkson site design nor
the Internet Explorer feature
gives users control over the hori-
zontal space required to display
the information in the navigation
area. (The navigation area in the
Clarkson design determines line

breaks dynamically, but the size of the text is not adjusted if
the window is made narrower. If graphics were used in the
Clarkson design, they would presumably be fixed in size.)

An ideal design would probably offer users all three capa-
bilities: control over the space required to display the infor-
mation (as on the Effective C++ CD), control over the space
available to display the information (as in HTML Help), and
control over the visibility of the navigation area itself (as in
Internet Explorer).

User Control Over
File Sizes

Everyone agrees that a strength of electronic publication
is its support for search capabilities not possible with paper
books. Designers of Web sites (including books on CD) gen-
erally focus on search engines external to the browser itself

because browser searches work
on only the current document. I
consider this dismissal of
browser search capabilities un-
warranted. For one thing, brows-
ers already have to parse HTML,
so they don’t get confused when
a user searches for “vector<int>”,
yet the underlying HTML con-

Figure 2: Adjusting the Navigation Area

Figure 3: Resizable Panes in HTML Help

58 MICROSOFT INTERNET developer October 1999

tains “vector<int>”; brows-
ers can correctly find a match.
More importantly, browsers are
uniquely capable of highlighting
the text they find, something no
external search engine can do.
(Some search engines such as
deja.com appear to be able to
highlight matched text, but they
actually generate a new page as a
result of each search, then they
display that page. This isn’t prac-
tical for a book on CD, because
the CD has no Web server and, at any rate, it hardly makes
sense to generate a new copy of an entire book simply to high-
light some search hits.)

In the introduction to the Effective C++ CD, I summarize
the situation—and my way of handling it—like this.

The big drawback to browser-based searches is that they work
on only the current file. It’s not practical to put all the informa-
tion on this CD in a single file, so there’s a trade-off to be made.
Bigger files support more complete browser-based searches, but
the files take longer to load and demand more memory. Smaller
files load faster and use less memory, but they yield more limited

Figure 4: A Two-pane Design in Internet Explorer

Figure 5: Clipped Text

browser searches. To resolve this dilemma, I decided to let you
make the call. This CD contains three copies of each book, each
broken down into files of different sizes, and you choose the
granularity you like best.
By now, I hope a trend in the design of the CD is emerg-

ing. When there are multiple ways to do something and no
way is clearly superior to the others, I try to support several
or all of them, then let users decide what’s best. I’ve found
this to be a much more reasonable way to take advantage of a
CD’s relatively large capacity than, for example, the inclusion
of gratuitous multimedia features such as video clips. More
significantly, this philosophy corresponds to my belief that
users should control their viewing experience—not Web de-
signers. The increasingly large number of magazine-like sites
where Web designers control as much as they possibly can—
including font choices, graphic sizes, even line breaks—run
contrary to the promise of HTML. In an HTML document,
the reader should be in control. Only the reader knows how

much screen space is available for the browser window.
Only the reader knows which fonts and font sizes are most
readable. Only the reader knows what size graphics are
most useful. Designers uncomfortable with this reader-
centric view of publishing should eschew HTML and
consider PDF instead.

Paragraph-specific Bookmarking
Virtually all large Web sites are organized in the form

of many small files. This is to facilitate bookmarking.
When you set a bookmark using your browser, you

simply have the browser remember the most recently
loaded URL. That URL certainly corresponds to the file
you’re viewing, but it need not have a particularly good
relationship to your current position within that file. For

example, if you’ve scrolled
through the fi le or used the
browser’s search function to
move around, your current po-
sition may be arbitrarily distant
from the most recently loaded
URL. The farther you are from
the most recently loaded URL,
the less useful it is to set a book-
mark because returning to that
bookmark won’t put you very
close to the information in which
you’re interested. The traditional

solution is small HTML files. That way, bookmarking the file
itself will always put you reasonably close to where you re-
ally want to be.

As I noted earlier, small files cripple browser-based
searches, but for books like mine, small files simply won’t
work. Some of the discussions in the books span many pages
on a single topic. Splitting such discussions into multiple
HTML files makes no sense. Furthermore, it’s often useful to
bookmark material in the middle of such discussions. I put
it this way in the CD’s introduction.

Virtually all
large Web sites
are organized

in the form
of many

small files
to facilitate

bookmarking.

October 1999 MICROSOFT INTERNET developer 59

60 MICROSOFT INTERNET developer October 1999

Item M28 on Smart Pointers, for example, covers more than 20
pages in the printed book, so you might want to create a link that
leads specifically to my discussion of how to emulate inherit-
ance-based implicit type conversions among smart pointer types.
I address that topic over halfway through the Item, and it’s rea-
sonable to want to jump directly to that discussion.

The Effective C++ CD deals with this problem in a rather
radical way. Each paragraph on the CD has its own URL, and
each paragraph on the CD ends with a ¤ symbol that is a link
to the beginning of the paragraph. This symbol is called the
paragraph’s dingbat (see Figure 7).

In theory, it should be possible to
bookmark a paragraph by clicking
on its dingbat (to jump to the URL
corresponding to the beginning of
the paragraph), then using your
browser’s Favorites command in the
usual fashion. Some browsers (nota-
bly Internet Explorer) fail to imple-
ment this functionality correctly, but
the CD describes workarounds for
such problems. The
workarounds are not terribly inter-
esting. What is interesting is that the
CD makes it possible to discover the
URL for a paragraph by using the
dingbat directly.

When the cursor is moved over a

Figure 6: The Navigation Area as a Separate Window

dingbat, the dingbat
expands into a text
description of the
paragraph. This is
typically an abbre-
viated version of the
document’s title plus
the number of the
paragraph within
the document. Figure
8 is the previous ex-
ample with the
dingbat expanded
into “CD Intro, P24”.

When the ding-
b at i s ex p an ded ,
browser commands
can be used to book-
mark it; the text de-
scription then
becomes the title of
the bookmark. Us-
ing Netscape Navi-
gator under
Windows®, for ex-
ample, users just
right-click the ex-
panded dingbat,
then select Add

Bookmark from the resulting pop-up menu.
Using similar browser commands, users can copy the URL

for a dingbat to the Clipboard. This means it’s easy to create
links from other HTML documents into the Effective C++
CD. That is, not only do paragraph-specific URLs (and the
dingbats through which users interact with them) facilitate
bookmarking specific information for particular users, they
also facilitate the integration of the CD with other collections
of HTML documents. For example, I expect many users to
link to specific parts of the CD from other HTML documents
they have that describe their C++ coding standards.

Because each paragraph on the CD has a number associ-
ated with its dingbat, it becomes
both possible and easy for people to
identify specific locations on the CD.
For example, people can refer to
paragraph 24 of the CD’s introduc-
tion or to paragraph 99 of Item 31
of More Effective C++. This has
proven to be remarkably useful. For
example, it enables users of the CD
to identify locations of confusion or
possible errors in the material and
the CD’s online errata list can iden-
tify locations of defects I have veri-
fied. Moreover, the idea of giving
each paragraph at a Web site a
unique identifier generalizes aston-

Figure 7: The Paragraph Dingbat

October 1999 MICROSOFT INTERNET developer 61

Figure 8: An Expanded Dingbat

Figure 9: Searching on the CD

ishingly well; there is otherwise no easy way to specify a par-
ticular location within a Web site. Document titles have a
granularity that is far too coarse to serve this purpose, yet
this is traditionally the only thing Web site designers offer
their users.

More Efficient Searching
One of the more annoying things about using search en-

gines (search applications external to browsers) is what I call
the double search phenomenon. That’s where you have to per-
form the search twice, once using the search engine to locate
the right pages, then again on each page using a browser
search to find the correct location on that page. The Effective
C++ CD avoids this problem because each paragraph on the
CD has a unique URL. The CD’s full-text search engine lo-
cates paragraphs containing the desired text, and each search
hit links to one such paragraph. So there is no need to per-
form a second search. Furthermore, each hit in the search

engine is summarized in a context window, so the relevance
of a hit can typically be determined entirely within the search
applet. In Figure 9, there are 11 hits for the search query “ob-
ject-oriented programming.” At the bottom of the window,
the context for the selected hit
(paragraph 4 of Item 35 of Effec-
tive C++—“E35”) is shown.

Preservation of Link Validity
URLs on the Internet are in a

constant state of flux. For reasons
unfathomable to me, many site
administrators think nothing of
reorganizing their sites on a regu-
lar basis, rendering all links into
the site invalid. This is a serious
problem for CD designers be-
cause URLs on a CD are, by defi-
nition, fixed. It was of special
concern to me because I design
my publications to have a useful
life of at least five years, far longer

than one can expect a Web URL to remain unchanged.
In accord with the maxim that all problems in com-

puter science can be solved by an additional level of in-
direction, the Effective C++ CD deals with the problem
of unstable URLs by using an online translation table
to insulate the URLs on the CD from the actual URLs
holding the information to which the CD links. As the
CD’s Introduction puts it:

All links from this CD to the Internet go to the Addison-
Wesley Web site, where they’re translated into the correct
URL (to the best of AW’s knowledge), and your browser is
then automatically forwarded to the correct place in
cyberspace. Going indirect via AW’s Web site for Internet
links imposes a small performance penalty, but I think it’s
more than made up for by the fact that when a URL
changes, all AW has to do is update its translation table,
and your CD continues to work.

In practice, I have been pleased to see that the performance
penalty is rarely noticeable.

Experiencing the CD
Many of the innovations on

the Effective C++ CD involve dy-
namic behavior that is difficult to
convey in a magazine article. If
you are interested in the behavior
I’ve described, I encourage you to
visit the Effective C++ CD demo
site at http:/ /meyerscd.awl.com. The
demo is fully functional, and you
can experiment with all the fea-
tures mentioned in this article.

Each paragraph
on the CD has its
own URL, which

avoids the
double searches
you need to do

with many
search engines.

