
-

Bounding Object Instantiations, Part 1

Okay, you’re crazy about objects, but sometimes you’d like to
bound your insanity. For example, you’ve only got one printer in
your system, so you’d like to somehow limit the number of printer
objects to one. Or you’ve only got 16 file descriptors you can hand
out, so you’ve got to make sure there are never more than that many
file descriptor objects in existence. How can you do such things?
How can you limit the number of objects?

Well, if this were a proof by mathematical induction, we’d start
with the base case of n = 1, then build from there. Fortunately, this is
neither a proof nor an induction. Furthermore, it turns out to be
more instructive to begin with n = 0, so we’ll start there instead.
How, then, do you prevent objects from being instantiated at all?

Each time an object is instantiated, we know one thing for sure: a
constructor will be called. That being the case, the easiest way to
prevent objects of a particular class from being created is to declare
the constructors of that class private:

class CantBeInstantiated {
private:
CantBeInstantiated();
CantBeInstantiated(const CantBeInstantiated&);

...

};

When employing this trick, it’s often important to declare a default
constructor, because if you declare no constructors at all, your ever-
helpful compilers will silently generate a public default constructor
for you. On the other hand, there’s really no need to declare the
copy constructor private, because you certainly don’t have to worry
about keeping objects from being copied if you can’t create them in
the first place. Still, it’s often good practice to emphasize that no
constructor is supposed to be accessible, and that’s why I’ve de-
clared the copy constructor private in CantBeInstantiated
above.

An uninstantiable class is generally pretty useless, but now that
we know how to remove everybody’s right to create objects, we can
selectively loosen the restriction. If, for example, we want to create a
class for printers, but we also want to accurately reflect the real-

This is a pre-publication draft of the column I wrote for the March-
April 1995 issue of the C++ Report. “Pre-publication” means this is
what I sent to the Report, but it may not be exactly the same as what ap
peared in print, because the Report and I often make small changes
after I submit the “final” draft for a column. Comments? Feel free to
send me mail: smeyers@aristeia.com.

world fact that there is only one printer available to us, here’s a way
to encapsulate the printer object inside a function such that every-
body has access to the printer, but only a single printer object is ever
created:

class Printer {
friend Printer& thePrinter();

private:
Printer();
Printer(const Printer& rhs);
...

public:
void submitJob(const PrintJob& job);
void reset();
void performSelfTest();
...

};

Printer& thePrinter()
{
static Printer p; // the one printer object
return p;

}

There are three separate components to this design. First, the con-
structors of the Printer class are private. That suppresses object
creation. Second, the global function thePrinter is declared a
friend of the class. That lets thePrinter escape the restriction im-
posed by the private constructors. Finally, thePrinter contains a
static Printer object. That means only a single object will ever be
created. It also means that if thePrinter is never called, we won’t
waste the time and energy to construct the Printer object inside it.

Client code just refers to thePrinter whenever it wishes to in-
teract with the system’s lone printer. By returning a reference to a
Printer object, thePrinter can be used in any context where a
Printer object itself could be:

class PrintJob {
public:
PrintJob(const char *whatToPrint);

...

};

ostrstream buffer;

... // write stuff to
// buffer

thePrinter().reset();

char *bufContents =
buffer.str(); // get char* version

// of buffer

thePrinter().submitJob(bufContents);
delete [] bufContents; // avoid memory leak

In this example, we make use of an ostrstream object as an un-
bounded in-memory buffer. We write to it and write to it and write
to it until we need write no more, and the ostrstream object itself
is responsible for all the grungy memory management that must
take place to ensure the buffer expands to hold all the data we put
into it. Because they allow you to construct strings through se-
quences of standard output operations, ostrstreams are wonder-
ful for tasks like generating identifier names, file pathnames, and
error messages on the fly; they’re one of the most convenient things
in the iostream library. If you’re not familiar with ostrstreams,
dash to the nearest book that describes them (any self-respecting in-
troductory or reference book on C++ will do so) and read yourself
silly. You’ll be glad you did.

It’s possible, of course, that thePrinter strikes you as a need-
less addition to the global namespace. “Yes,” you may say, “as a glo-
bal function it looks more like a global variable, but global variables
are gauche, and I’d prefer to localize all printer-related functionality
inside the Printer class.” Well, far be it from me to argue with
someone who uses words like gauche. thePrinter can just as eas-
ily be made a static member function of Printer, and that puts it
right where you want it. It also eliminates the need for a friend
declaration, which many regard as tacky in its own right. Using a
static member function, Printer looks like this:

class Printer {
private:
Printer();
Printer(const Printer& rhs);
...

public:
static Printer& thePrinter();
...

};

Printer& Printer::thePrinter()
{
static Printer p;
return p;

}

Now, however, clients have to be a bit wordier when they refer to
the printer:

Printer::thePrinter().reset();

char *bufContents = buffer.str();
Printer::thePrinter().submitJob(bufContents);
delete [] bufContents;

Needless to say, this is hardly crippling.
There are two subtleties here worth exploring. First, it’s important

that the single Printer object be static in a function and not in a

class. An object that’s static in a class is, for all intents and purposes,
always constructed (and destructed), even if it’s never used. In con-
trast, an object that’s static in a function is created the first time
through the function, so if the function’s never called, the object is
never created. One of the philosophical pillars on which C++ was
built is the idea that you shouldn’t pay for things you don’t use, and
defining an object like our printer as a static object in a function is
one way of adhering to this philosophy.

There is another drawback to making the printer a class static ver-
sus a function static, and that has to do with its time of initialization.
We know exactly when a function static is initialized: it’s the first
time through the function at the point where the static is defined.
The situation with a class static (or, for that matter, a global static,
should you be so gauche as to use one) is less well defined. The
emerging C++ standard offers certain guarantees regarding the
order of initialization of statics within a particular translation unit
(i.e., a body of source code that yields a single object file), but it has
nothing to say about the initialization order of static objects in differ-
ent translation units. In practice, this turns out to be a source of
countless headaches. Function statics, when they can be made to
suffice, avoid these headaches. In our example here, they can, so
why suffer?

The second subtlety has to do with the interaction of inlining and
static objects inside functions. Look again at the code for theP-
rinter:

Printer& Printer::thePrinter()
{
static Printer p;
return p;

}

Except for the first time through this function (when p must be con-
structed), this is a one-line function — it consists entirely of the
statement “return p;”. If ever there were a good candidate for in-
lining, this function would certainly seem to be the one. Yet it’s not
declared inline. Why not?

Consider for a moment why you’d declare an object to be static.
It’s usually because you only want a single copy of that object,
right? Now consider what inline means. Conceptually, of course,
it means the compiler should replace each call to the function with a
copy of the function body, but it means something else to your com-
pilers, too. It also means the function in question has internal linkage.

I hate to do this to you, but we need to take a brief terminology
time-out. If you have a weak heart, you should probably grab your
nitroglycerin and sit down before reading the next few paragraphs.

A function with internal linkage (such as an inline function) isn’t
visible outside the current translation unit; it’s treated just like a
function in C (or C++) that’s declared static at file scope. Non-in-
line functions, on the other hand, have external linkage and are visi-
ble everywhere in a program, even outside the current translation
unit. In other words, compilers treat such functions as if they were
explicitly declared extern.

Enter the word “static.” If you like overloading, you must love
this word. When applied to a variable, object, or function at file
scope, the keyword static means “a separate copy for this transla-
tion unit.” (At file scope, then, static non-inline functions have inter-
nal linkage.) When applied to a variable or object at class or function
scope, static means “only one copy of this thing.” (When applied
to a function at class scope, it means “can only access static members
of this class,” but that meaning doesn’t concern us here.)

But wait. Static variables and objects and all variables and objects
at file, namespace, or global scope are said to have storage class
“static.” Such variables and objects are initialized once per program
run through what is called static initialization. Static initialization
typically (though not necessarily) occurs prior to calling main. Un-
fortunately, variables and objects that are initialized through static
initialization need not have been declared static. For example,
global variables aren’t declared static, but they are initialized
through a program’s static initialization.

By now you must be wondering why on earth you should care.
You should care because it affects the behavior of your programs. In
particular, the meaning of the function thePrinter, if it were to be
defined as follows, is almost certainly not what you expect:

inline Printer& Printer::thePrinter()
{
static Printer p;
return p;

}

As an inline function, thePrinter has internal linkage, so it’s
not visible outside a translation unit. You therefore get a different
copy of thePrinter inside each translation unit that uses it. Most
programs are made up of many translation units (i.e., object files), so
most programs using thePrinter would end up with many cop-
ies of this function. What, then, of the static object p inside theP-
rinter? Well, each translation unit contains a different copy of this
function, so each copy of thePrinter gets its own copy of p! In
short, if you put a static object inside an inline function, you end up
with one object per translation unit that uses the function, not one ob-
ject for the entire program.

It is highly unlikely that this is what you want.
In fact, it is so unlikely that some compiler vendors ignore the dic-

tates of the nascent standard and give you only a single copy of a
function static, even if the function is declared inline. Really.
Other vendors do what the standard says they’re supposed to do.
And some offer both behaviors, letting you choose which one you
get through a command line switch or some other configuration op-
tion.

In view of this state of affairs, inline functions containing static
objects are, for all practical purposes, unportable, even if you under-
stand their highly unintuitive semantics. We are only interested in
portable programs, so thePrinter above is not declared inline.

But, alas, you are stubborn. If, in spite of the foregoing discussion,
you are absolutely positively determined to inline thePrinter, do it
this way:

extern inline Printer& Printer::thePrinter()
{
static Printer p;
return p;

}

Here inline tells your compilers to give thePrinter internal
linkage, but extern tells them to give it external linkage. It turns
out that extern trumps inline for purposes of linkage specifica-
tions, so this should yield a single externally linked inline function
with a single static Printer object inside it. I say “should” because
it would be far from surprising if different compilers did different
things, the would-be language standard notwithstanding. It would
also be far from surprising if people who read this code have no idea
what you are trying to do.

An alternative approach to allowing the creation of only a single
object may be found in the new book on design patterns by Gamma,
Helm, Johnson, and Vlissides [cite it here]. Their Singleton pattern is
similar to the approach I just presented, but they avoid the nettle-
some issue of function statics by using a static pointer in the class. As
a result, however, their thePrinter-like function must return a
pointer, and that affects the syntax that clients must employ.

But maybe you think this business of creating a function to return
a reference (or, if you’re partial to Gamma et al.’s Singleton pattern, a
pointer) to a hidden object is the wrong way to go about limiting the
number of objects in the first place. Perhaps you think it’s much
more straightforward to simply count the number of objects in exist-
ence and throw an exception in a constructor if too many objects are
requested. In other words, maybe you think we should handle
printer creation like this:

class Printer {
private:
static unsigned short numObjects = 0;

Printer(const Printer& rhs);
// there is a limit of 1
// printer, so never allow
// copying

public:
class TooManyObjects{};

// exception class for use
// when too many objects
// are requested

public:
Printer();
~Printer();

...

};

The idea is to use numObjects to keep track of how many
Printer objects are currently in existence. This value will be incre-
mented in the class constructors and decremented in its destructor.

If an attempt is made to construct too many Printer objects, we
throw an exception of type TooManyObjects:

// Obligatory definition of the class static
unsigned short Printer::numObjects;

Printer::Printer()
{
if (numObjects >= 1) {
throw TooManyObjects();

}

proceed with normal construction here;

++numObjects;
}

Printer::~Printer()
{
perform normal destruction here;

--numObjects;
}

By the way, don’t be surprised if your compilers get all upset
about the declaration of Printer::numObjects in the class defini-
tion above. In particular, be prepared for them to complain about
the specification of 0 as an initial value for that variable. The ability
to specify such initial values inside a class definition was added to
C++ only recently, so many compilers don’t yet allow it. If your
compilers are as-yet-unupdated, send their vendors hate mail, then
pacify the compilers by declaring numObjects without an initial
value:

class Printer {
private:
static unsigned short numObjects;

// no initial value
... // specified

};

This has the same effect as the code above, because class statics are
implicitly initialized to 0, but explicitly specifying the initial value is
a lot easier for other programmers to understand. Furthermore, you
can specify any (constant) initial value in the class definition; you’re
not limited to the value 0, as you are with implicit initialization.
When your compilers support the specification of initial values in
class definitions, then, you should surely take advantage of that ca-
pability.

Initializations of statics aside, this approach to limiting object cre-
ation is attractive for a couple of reasons. For one thing, it’s very
straightforward — everybody should be able to understand what’s
going on. For another, it’s easy to generalize this approach so that
the maximum number of allowed objects is some number other
than 1.

Unfortunately, there is also a problem with this strategy. Suppose
we have a special kind of printer, say, a color printer. The class for

such printers would have much in common with our generic printer
class, so of course we’d inherit from it:

class ColorPrinter: public Printer {
...

};

Now suppose we have one generic printer and one color printer in
our system:

Printer p;
ColorPrinter cp;

How many Printer objects result from these object definitions?
The answer is two: one for p and one for the Printer part of cp. At
runtime, then, a TooManyObjects exception will be thrown dur-
ing the construction of the base class part of cp. For many program-
mers, this is neither what they want nor what they expect. (Designs
that avoid having concrete classes inherit from other concrete
classes do not suffer from this problem. For details on this design
philosophy, consult my columns in the July-August 1994, Novem-
ber-December 1994, and January 1995 C++ Reports.)

A similar problem occurs when Printer objects are contained
inside other objects:

class CPFMachine { // for machines that can
private: // copy, print, and fax

Printer p; // for printing capabilities
FaxMachine f; // for faxing capabilities
CopyMachine c; // for copying capabilities

...

};

CPFMachine m1; // fine

CPFMachine m2; // throws TooManyObjects
// exception

The problem is that Printer objects can exist in three different con-
texts: on their own, as base class parts of more derived objects, and
embedded inside larger objects. The presence of these different con-
texts significantly muddies the waters regarding what it means to
keep track of the “number of objects in existence,” because what
you consider to be the existence of an object may not jibe with your
compilers’.

Often, you will be interested only in allowing objects to exist on
their own, and you will wish to limit the number of those kinds of in-
stantiations. That restriction is easy to satisfy if you adopt the strat-
egy exemplified by our original Printer class, because the
Printer constructors are private, and (in the absence of friend
declarations) classes with private constructors can’t be used as base
classes, nor can they be embedded inside other objects.

The fact that you can’t derive from classes with private construc-
tors leads to a general scheme for preventing derivation, one that

doesn’t necessarily have to be coupled with limiting object instanti-
ations. Suppose, for example, you have a class, UPNumber, for rep-
resenting numbers with unlimited precision. Further suppose you’d
like to allow any number of UPNumber objects to be created, but
you’d also like to ensure that no class ever inherits from UPNumber.
(One reason for doing this might be to justify the presence of a non-
virtual destructor in UPNumber. Classes without virtual functions
yield smaller objects than do equivalent classes with virtual func-
tions, because there is no need for each object to carry around a
pointer to the class’s virtual table.) Here’s how you can design UP-
Number to satisfy both criteria:

class UPNumber {
private:
UPNumber();
UPNumber(int initValue);
UPNumber(double initValue);
UPNumber(const UPNumber& rhs);
...

public:
// pseudo-constructors
static UPNumber makeNumber();
static UPNumber makeNumber(int initValue);
static UPNumber makeNumber(double initValue);
static UPNumber makeNumber(const

UPNumber& rhs);
...

};

UPNumber UPNumber::makeNumber()
{ return UPNumber(); }

UPNumber UPNumber::makeNumber(int initValue)
{ return UPNumber(initValue); }

UPNumber UPNumber::makeNumber(double initValue)
{ return UPNumber(initValue); }

UPNumber UPNumber::makeNumber(const
UPNumber& rhs)

{ return UPNumber(rhs); }

Unlike the thePrinter function that always returned a refer-
ence to a single object, each makeNumber pseudo-constructor re-
turns a unique object. That’s what allows an unlimited number of
UPNumber objects to be created.

Some of you will look askance at the fact that each pseudo-con-
structor returns an object by value. This is, you’ll doubtless point
out, a potential efficiency bottleneck, because each by-value return
implies the cost of a constructor to create the returned object and a
destructor to destroy it. This cost can be eliminated by having each
makeNumber function call new:

UPNumber * UPNumber::makeNumber()
{ return new UPNumber; }

UPNumber * UPNumber::makeNumber(int initValue)
{ return new UPNumber(initValue); }

UPNumber * UPNumber::makeNumber(double
initValue)

{ return new UPNumber(initValue); }

UPNumber * UPNumber::makeNumber(const
UPNumber& rhs)

{ return new UPNumber(rhs); }

Of course, callers of makeNumber must now remember to call
delete on the pointers they thus receive. The gain in efficiency
must therefore be balanced against the risk of a memory leak.

In my next column, we’ll continue our examination of how we can
limit the number of instantiations of a class.

References:

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
Addison-Wesley, 1995.

	Bounding Object Instantiations, Part 1

