
d

e

Signed and Unsigned Types in Interfaces

Suppose you’re writing a class template for array-like objects.
For consistency with built-in arrays, it would be appropriate
to define a constructor taking an argument specifying the size
of the array. Assuming the number of elements in Array ob-
jects can change (through, for example, assignment or ex-
plicit size-changing member functions), it would also be
convenient to provide a function that returns the current size
of an Array object.

If you’re like most C++ programmers, your first cut at declar-
ing these member functions would look something like this:

template<class T>
class Array {
public:
Array(int size);
...
int length() const;

};

Upon further reflection, however, you might conclude that it
makes no sense to have an array whose size is less than zero,
so you might modify your class definition to specify more pre-
cisely that only non-negative numbers are expected:

template<class T>
class Array {
public:
Array(unsigned int size);

// size is now unsigned
...

unsigned int length() const;
// return type is now unsigned

};

This design makes your rejection of negative array sizes clear,
and, as a bonus, it allows you to double the maximum size of
your Array objects without having to resort to long ints. Fur-
thermore, it follows the lead of C++ itself, which generally em-
ploys unsigned types when specify ing how many of
something are needed. For example, operator new uses the
unsigned type size_t for specifying how many bytes of mem-
ory to allocate, and the standard vector classes [citations]
use the typedef size_type as a synonym for whatever un-
signed type is used to specify how many elements a vector
should initially contain. 

This is a pre-publication draft of the column I wrote for the September
1995 issue of the C++ Report. “Pre-publication” means this is what I
sent to the Report, but it may not be exactly the same as what appeare
in print, because the Report and I often make small changes after I sub-
mit the “final” draft for a column. Comments? Feel free to send m
mail: smeyers@aristeia.com.



These features make unsigned types attractive, but there is a
dark side to their use that must also be taken into account.
One problem is that unsigned types tend to decrease your
ability to detect common programming errors. Another is that
they often increase the likelihood that clients of your classes
will use the classes incorrectly.

Consider first error detection. Suppose a programmer defines
an Array object as follows:

int f(); // f and g are functions that return
int g(); // ints; what they do is unimportant

Array<double> a(f()-g()); // array size is f()-g()

There’s nothing wrong with this definition for a, except for the
possibility that the programmer writing it made an error. In-
stead of the size of the array being f()-g(), perhaps it
should have been g()-f(). Or maybe it should have been
f()+g(). Or possibly it should have been f()-g()+1; off-by-
one errors are certainly common enough. Heck, it’s even pos-
sible that f()-g() is correct, but f() or g() is returning a
bad value. Any of these scenarios could lead to the Array
constructor being passed a size that was less than zero. As
the author of the Array class, there’s no way you can keep
clients from making mistakes such as these, but you can do
the next best thing: you can detect such errors and act on
them.

Well, actually, maybe you can’t. You can’t if you declared Ar-
ray’s constructor to take an unsigned value, because if a
negative number is passed to a function as an unsigned, the
number seen by the function isn’t negative at all. Instead, it’s
a very large positive number. As a result, you’d have no way
within the Array constructor of distinguishing between a
large, but valid, positive size value and a large, but invalid,
positive size value arising from passing in a negative number.
Hence, you’d be unable to detect programming errors that re-
sult in negative array sizes being requested. Because such er-
rors are not uncommon, this makes your class easy to use
incorrectly. Well-designed classes are easy to use correctly
and hard to use incorrectly, so you should reconsider your
design with an eye toward allowing the Array constructor to
detect when an Array with a negative size is requested.

The easiest way to do this is to revert to the original function
prototype, the one where the Array’s size is passed as a
signed int. Detection of negative sizes is then no challenge at
all:

template<class T>
Array<T>::Array(int size)
{
if (size < 0) {
throw an exception or take some other action;

}

...

}

The use of a signed parameter type in the Array constructor
makes this kind of sanity checking possible. The conclusion



should be clear: don’t use unsigned types in interfaces unless
you are willing to forego the ability to detect negative values
passed through those interfaces.

Now, the design using signed parameter types only allows
error detection, it doesn’t require it. For example, if you don’t
want to pay for error detection in production code, you can
use conditional compilation to eliminate the cost:

template<class T>
Array<T>::Array(int size)
{
#ifdef DEBUGGING
if (size < 0) {
throw an exception or take some other action;

}
#endif

...

}

In many cases, such debugging code exacts a negligible per-
formance penalty, so you can often allow it to remain in pro-
duction code. That’s especially important for class libraries
that are used by many clients, because the errors being de-
tected in this case are in client code, not library code. Such
errors are almost always worth detecting, even in production
versions of programs and libraries.

It’s now clear that unsigned types lead to difficulties when
used in parameter lists, but what’s the problem with using
them for the return type of functions like Array::length?
length is a member function, so you, as class implementer,
have complete control over how it computes its result. You
also have control over whether that value is allowed to be
negative. If you’re careful, then, the value will never be nega-
tive, and there’s no problem with returning an unsigned,
right?

Not right. The problem again lies with those pesky clients,
You just can’t rely on them to do what they’re supposed to do.
In particular, you have to assume they’ll write code like this:

Array<double> a(f()-g()); // as before, but
// assume f()-g() > 0

...

int arraySize = a.length(); // initialize an int
// with an unsigned

It’s a fact of life that many programmers never venture be-
yond int in the world of integral types, so the likelihood is
high that if Array::length returns an unsigned value, many
clients will save that value as an int anyway. If they do, and
if the value returned by the function is greater than the max-
imum value that can be stored in an int, they’ll end up stor-
ing a negative number. Something thereafter will almost
surely break, and though the fault will technically be theirs,
you will have facilitated the error by returning a type that is
prone to lead to errors. In many cases, it’s better to simply re-
turn an int directly, thus nipping the problem in the bud.



If you do that, of course, you reduce the range of values you
can return, because you must pay for a sign bit you don’t re-
ally need. In many cases, however, the increase in software
robustness more than compensates for the reduced range of
values.

References

B. Stroustrup, “Making a Vector Fit for a Standard,” C++ Report,
October 1994.

Accredited Standards Committee X3J16, “Working Paper for
Draft Proposed International Standard for Information Systems —
Programming Language C++,” April 1995.


	Signed and Unsigned Types in Interfaces

