
C++ and the Perils of Double-Checked Locking ∗

Scott Meyers and Andrei Alexandrescu

September 2004

Multithreading is just one damn thing after, before, or simultaneous
with another.

1 Introduction

Google the newsgroups or the web for the names of various design patterns,
and you’re sure to find that one of the most commonly mentioned is Singleton.
Try to put Singleton into practice, however, and you’re all but certain to bump
into a significant limitation: as traditionally implemented (and as we explain
below), Singleton isn’t thread-safe.

Much effort has been put into addressing this shortcoming. One of the most
popular approaches is a design pattern in its own right, the Double-Checked
Locking Pattern (DCLP) [13, 14]. DCLP is designed to add efficient thread-
safety to initialization of a shared resource (such as a Singleton), but it has a
problem: it’s not reliable. Furthermore, there’s virtually no portable way to
make it reliable in C++ (or in C) without substantively modifying the conven-
tional pattern implementation. To make matters even more interesting, DCLP
can fail for different reasons on uniprocessor and multiprocessor architectures.

This article explains why Singleton isn’t thread safe, how DCLP attempts to
address that problem, why DCLP may fail on both uni- and multiprocessor ar-
chitectures, and why you can’t (portably) do anything about it. Along the way,
it clarifies the relationships among statement ordering in source code, sequence
points, compiler and hardware optimizations, and the actual order of statement
execution. Finally, it concludes with some suggestions regarding how to add
thread-safety to Singleton (and similar constructs) such that the resulting code
is both reliable and efficient.

2 The Singleton Pattern and Multithreading

The traditional implementation of the Singleton Pattern [7] is based on making
a pointer point to a new object the first time the object is requested:

∗This is a slightly-modified version of an article that appeared in Dr. Dobbs Journal in
the July (Part I) and August (Part II), 2004, issues.

1



1 // from the header file

2 class Singleton {
3 public:
4 static Singleton* instance();
5 ...
6 private:
7 static Singleton* pInstance;
8 };
9

10 // from the implementation file

11 Singleton* Singleton::pInstance = 0;
12

13 Singleton* Singleton::instance() {
14 if (pInstance == 0) {
15 ��������� � ��	 
��������

16 }
17 return pInstance;
18 }

In a single-threaded environment, this generally works fine, though inter-
rupts can be problematic. If you are in Singleton::instance, receive an in-
terrupt, and invoke Singleton::instance from the handler, you can see how
you’d get into trouble. Interrupts aside, however, this implementation works
fine in a single-threaded environment.

Unfortunately, this implementation is not reliable in a multithreaded en-
vironment. Suppose that Thread A enters the instance function, executes
through Line 14, and is then suspended. At the point where it is suspended, it
has just determined that pInstance is null, i.e., that no Singleton object has
yet been created.

Thread B now enters instance and executes Line 14. It sees that pInstance
is null, so it proceeds to Line 15 and creates a Singleton for pInstance to point
to. It then returns pInstance to instance’s caller.

At some point later, Thread A is allowed to continue running, and the first
thing it does is move to Line 15, where it conjures up another Singleton object
and makes pInstance point to it. It should be clear that this violates the
meaning of a singleton, as there are now two Singleton objects.

Technically, Line 11 is where pInstance is initialized, but for practical pur-
poses, it’s Line 15 that makes it point where we want it to, so for the remainder
of this article, we’ll treat Line 15 as the point where pInstance is initialized.

Making the classic Singleton implementation thread safe is easy. Just acquire
a lock before testing pInstance:

Singleton* Singleton::instance() {
Lock lock; // acquire lock (params omitted for simplicity)

if (pInstance == 0) {
pInstance = new Singleton;

}

2



return pInstance;
} // release lock (via Lock destructor)

The downside to this solution is that it may be expensive. Each access to
the Singleton requires acquisition of a lock, but in reality, we need a lock only
when initializing pInstance. That should occur only the first time instance
is called. If instance is called n times during the course of a program run, we
need the lock only for the first call. Why pay for n lock acquisitions when you
know that n − 1 of them are unnecessary? DCLP is designed to prevent you
from having to.

3 The Double-Checked Locking Pattern

The crux of DCLP is the observation that most calls to instance will see that
pInstance is non-null, hence not even try to initialize it. Therefore, DCLP tests
pInstance for nullness before trying to acquire a lock. Only if the test succeeds
(i.e., if pInstance has not yet been initialized) is the lock acquired, and after
that the test is performed again to make sure pInstance is still null (hence the
name double-checked locking). The second test is necessary, because, as we just
saw, it is possible that another thread happened to initialize pInstance between
the time pInstance was first tested and the time the lock was acquired.

Here’s the classic DCLP implementation[13, 14]:

Singleton* Singleton::instance() {
if (pInstance == 0) { // 1st test

Lock lock;
if (pInstance == 0) { // 2nd test

pInstance = new Singleton;
}

}
return pInstance;

}

The papers defining DCLP discuss some implementation issues (e.g., the
importance of volatile-qualifying the singleton pointer and the impact of sep-
arate caches on multiprocessor systems, both of which we address below; as well
as the need to ensure the atomicity of certain reads and writes, which we do
not discuss in this article), but they fail to consider a much more fundamental
problem, that of ensuring that the machine instructions executed during DCLP
are executed in an acceptable order. It is this fundamental problem we focus on
here.

4 DCLP and Instruction Ordering

Consider again the line that initializes pInstance:

pInstance = new Singleton;

3



This statement causes three things to happen:
Step 1: Allocate memory to hold a Singleton object.
Step 2: Construct a Singleton object in the allocated memory.
Step 3: Make pInstance point to the allocated memory.
Of critical importance is the observation that compilers are not constrained

to perform these steps in this order! In particular, compilers are sometimes
allowed to swap steps 2 and 3. Why they might want to do that is a question
we’ll address in a moment. For now, let’s focus on what happens if they do.

Consider the following code, where we’ve expanded pInstance’s initializa-
tion line into the three constituent tasks we mentioned above and where we’ve
merged steps 1 (memory allocation) and 3 (pInstance assignment) into a single
statement that precedes step 2 (Singleton construction). The idea is not that a
human would write this code. Rather, it’s that a compiler might generate code
equivalent to this in response to the conventional DCLP source code (shown
earlier) that a human would write.

Singleton* Singleton::instance() {
if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {
pInstance = // Step 3

operator new(sizeof(Singleton)); // Step 1

new (pInstance) Singleton; // Step 2

}
}
return pInstance;

}

In general, this is not a valid translation of the original DCLP source code,
because the Singleton constructor called in step 2 might throw an exception,
and if an exception is thrown, it’s important that pInstance not yet have been
modified. That’s why, in general, compilers cannot move step 3 above step 2.
However, there are conditions under which this transformation is legitimate.
Perhaps the simplest such condition is when a compiler can prove that the
Singleton constructor cannot throw (e.g., via post-inlining flow analysis), but
that is not the only condition. Some constructors that throw can also have their
instructions reordered such that this problem arises.

Given the above translation, consider the following sequence of events:

• Thread A enters instance, performs the first test of pInstance, acquires
the lock, and executes the statement made up of steps 1 and 3. It is then
suspended. At this point pInstance is non-null, but no Singleton object
has yet been constructed in the memory pInstance points to.

• Thread B enters instance, determines that pInstance is non-null, and
returns it to instance’s caller. The caller then dereferences the pointer
to access the Singleton that, oops, has not yet been constructed.

4



DCLP will work only if steps 1 and 2 are completed before step 3 is per-
formed, but there is no way to express this constraint in C or C++. That’s the
dagger in the heart of DCLP: we need to define a constraint on relative instruc-
tion ordering, but our languages give us no way to express the constraint.

Yes, the C and C++ standards [16, 15] do define sequence points, which
define constraints on the order of evaluation. For example, paragraph 7 of
Section 1.9 of the C++ standard encouragingly states:

At certain specified points in the execution sequence called sequence points,
all side effects of previous evaluations shall be complete and no side effects
of subsequent evaluations shall have taken place.

Furthermore, both standards state that a sequence point occurs at the end of
each statement. So it seems that if you’re just careful with how you sequence
your statements, everything falls into place.

Oh, Odysseus, don’t let thyself be lured by sirens’ voices; for much trouble
is waiting for thee and thy mates!

Both standards define correct program behavior in terms of the observable
behavior of an abstract machine. But not everything about this machine is
observable. For example, consider this simple function:

void Foo() {
int x = 0, y = 0; // Statement 1

x = 5; // Statement 2

y = 10; // Statement 3

printf("%d,�%d", x, y); // Statement 4

}

This function looks silly, but it might plausibly be the result of inlining some
other functions called by Foo.

In both C and C++, the standards guarantee that Foo will print "5,�10",
so we know that that will happen. But that’s about the extent of what we’re
guaranteed, hence of what we know. We don’t know whether statements 1-3 will
be executed at all, and in fact a good optimizer will get rid of them. If statements
1-3 are executed, we know that statement 1 will precede statements 2-4 and—
assuming that the call to printf isn’t inlined and the result further optimized—
we know that statement 4 will follow statements 1-3, but we know nothing about
the relative ordering of statements 2 and 3. Compilers might choose to execute
statement 2 first, statement 3 first, or even to execute them both in parallel,
assuming the hardware has some way to do it. Which it might well have.
Modern processors have a large word size and several execution units. Two
or more arithmetic units are common. (For example, the Pentium 4 has three
integer ALUs, PowerPC’s G4e has four, and Itanium has six.) Their machine
language allows compilers to generate code that yields parallel execution of two
or more instructions in a single clock cycle.

Optimizing compilers carefully analyze and reorder your code so as to exe-
cute as many things at once as possible (within the constraints on observable
behavior). Discovering and exploiting such parallelism in regular serial code is

5



the single most important reason for rearranging code and introducing out-of-
order execution. But it’s not the only reason. Compilers (and linkers) might
also reorder instructions to avoid spilling data from a register, to keep the in-
struction pipeline full, to perform common subexpression elimination, and to
reduce the size of the generated executable [4].

When performing these kinds of optimizations, compilers and linkers for C
and C++ are constrained only by the dictates of observable behavior on the ab-
stract machines defined by the language standards, and—this is the important
bit—those abstract machines are implicitly single threaded. As languages, nei-
ther C nor C++ have threads, so compilers don’t have to worry about breaking
threaded programs when they are optimizing. It should therefore not surprise
you that they sometimes do.

That being the case, how can one write C and C++ multithreaded pro-
grams that actually work? By using system-specific libraries defined for that
purpose. Libraries like Posix threads (pthreads) [6] give precise specifications
for the execution semantics of various synchronization primitives. These li-
braries impose restrictions on the code that library-conformant compilers are
permitted to generate, thus forcing such compilers to emit code that respects
the execution ordering constraints on which those libraries depend. That’s why
threading packages have parts written in assembler or issue system calls that
are themselves written in assembler (or in some unportable language): you have
to go outside standard C and C++ to express the ordering constraints that
multithreaded programs require. DCLP tries to get by using only language
constructs. That’s why DCLP isn’t reliable.

As a rule, programmers don’t like to be pushed around by their compilers.
Perhaps you are such a programmer. If so, you may be tempted to try to out-
smart your compiler by adjusting your source code so that pInstance remains
unchanged until after Singleton’s construction is complete. For example, you
might try inserting use of a temporary variable:

Singleton* Singleton::instance() {
if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {
Singleton* temp = new Singleton; // initialize to temp

pInstance = temp; // assign temp to pInstance

}
}
return pInstance;

}

In essence, you’ve just fired the opening salvo in a war of optimization. Your
compiler wants to optimize. You don’t want it to, at least not here. But this is
not a battle you want to get into. Your foe is wiley and sophisticated, imbued
with strategems dreamed up over decades by people who do nothing but think
about this kind of thing all day long, day after day, year after year. Unless you
write optimizing compilers yourself, they are way ahead of you. In this case,

6



for example, it would be a simple matter for the compiler to apply dependence
analysis to determine that temp is an unnecessary variable, hence to eliminate it,
thus treating your carefully crafted “unoptimizable” code if it had been written
in the traditional DCLP manner. Game over. You lose.

If you reach for bigger ammo and try moving temp to a larger scope (say
by making it file static), the compiler can still perform the same analysis and
come to the same conclusion. Scope, schmope. Game over. You lose.

So you call for backup. You declare temp extern and define it in a separate
translation unit, thus preventing your compiler from seeing what you are doing.
Alas for you, some compilers have the optimizing equivalent of night-vision
goggles: they perform interprocedural analysis, discover your ruse with temp,
and again they optimize it out of existence. Remember, these are optimizing
compilers. They’re supposed to track down unnecessary code and eliminate it.
Game over. You lose.

So you try to disable inlining by defining a helper function in a different file,
thus forcing the compiler to assume that the constructor might throw an excep-
tion and therefore delay the assignment to pInstance. Nice try, but some build
environments perform link-time inlining followed by more code optimizations
[5, 11, 4]. GAME OVER. YOU LOSE.

Nothing you do can alter the fundamental problem: you need to be able
to specify a constraint on instruction ordering, and your language gives you no
way to do it.

5 Almost Famous: The �������� Keyword

The desire for specific instruction ordering makes many wonder whether the
volatile keyword might be of help with multithreading in general and with
DCLP in particular. In this section, we restrict our attention to the semantics
of volatile in C++, and we further restrict our discussion to its impact on
DCLP. For a broader discussion of volatile, see the accompanying sidebar.

Section 1.9 of the C++ standard [15] includes this information (emphasis
ours):

The observable behavior of the [C++] abstract machine is its sequence
of reads and writes to volatile data and calls to library I/O functions.

Accessing an object designated by a volatile lvalue, modifying an ob-
ject, calling a library I/O function, or calling a function that does any of
those operations are all side effects, which are changes in the state of the
execution environment.

In conjunction with our earlier observations that (1) the Standard guarantees
that all side effects will have taken place when sequence points are reached and
(2) a sequence point occurs at the end of each C++ statement, it would seem
that all we need to to do to ensure correct instruction order is to volatile-
qualify the appropriate data and to sequence our statements carefully.

Our earlier analysis shows that pInstance needs to be declared volatile,
and in fact this point is made in the papers on DCLP[13, 14]. However, Sherlock

7



Holmes would certainly notice that, in order to ensure correct instruction order,
the Singleton object itself must be also volatile. This is not noted in the
original DCLP papers, and that’s an important oversight.

To appreciate how declaring pInstance alone volatile is insufficient, con-
sider this:

class Singleton {
public:
static Singleton* instance();
...

private:
static Singleton* ������ pInstance; // volatile added

int x;
Singleton() : x(5) {}

};

// from the implementation file

Singleton* ������ Singleton::pInstance = 0;

Singleton* Singleton::instance() {
if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {
Singleton* ������ temp = new Singleton; // volatile added

pInstance = temp;
}

}
return pInstance;

}

After inlining the constructor, the code looks like this:

if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {
Singleton* volatile temp =
static_cast<Singleton*>(operator new(sizeof(Singleton)));

temp->x = 5; // inlined Singleton constructor

pInstance = temp;
}

}

Though temp is volatile, *temp is not, and that means that temp->x isn’t,
either. Because we now understand that assignments to non-volatile data may
sometimes be reordered, it is easy to see that compilers could reorder temp->x’s
assignment with regard to the assignment to pInstance. If they did, pInstance
would be assigned before the data it pointed to had been initialized, leading
again to the possibility that a different thread would read an uninitialized x.

8



An appealing-looking treatment for this disease would be to volatile-
qualify *pInstance as well as pInstance itself, yielding a glorified version of
Singleton where all pawns are painted volatile:

class Singleton {
public:
static volatile Singleton* volatile instance();
...

private:
// one more volatile added

static ������ Singleton* volatile pInstance;
};

// from the implementation file

volatile Singleton* volatile Singleton::pInstance = 0;

volatile Singleton* volatile Singleton::instance() {
if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {
// one more volatile added

������ Singleton* volatile temp =
new ������ Singleton;

pInstance = temp;
}

}
return pInstance;

}

(At this point, one might reasonably wonder why Lock isn’t also declared
volatile. After all, it’s critical that the lock be initialized before we try to
write to pInstance or temp. Well, Lock comes from a threading library, so
we can assume it either dictates enough restrictions in its specification or em-
beds enough magic in its implementation to work without needing volatile.
This is the case with all threading libraries that we know of. In essence, use
of entities (e.g., objects, functions, etc.) from threading libraries leads to the
imposition of “hard sequence points” in a program—sequence points that apply
to all threads. For purposes of this article, we assume that such “hard sequence
points” act as firm barriers to instruction reordering during code optimization:
instructions corresponding to source statements preceding use of the library en-
tity in the source code may not be moved after the instructions corresponding to
use of the entity, and instructions corresponding to source statements following
use of such entities in the source code may not be moved before the instruc-
tions corresponding to their use. Real threading libraries impose less draconian
restrictions, but the details are not important for purposes of our discussion
here.)

One might hope that the above fully volatile-qualified code would be guar-

9



anteed by the Standard to work correctly in a multithreaded environment, but
it may fail for two reasons.

First, the Standard’s constraints on observable behavior are only for an ab-
stract machine defined by the Standard, and that abstract machine has no no-
tion of multiple threads of execution. As a result, though the Standard prevents
compilers from reordering reads and writes to volatile data within a thread, it
imposes no constraints at all on such reorderings across threads. At least that’s
how most compiler implementers interpret things. As a result, in practice, many
compilers may generate thread-unsafe code from the source above. If your mul-
tithreaded code works properly with volatile and doesn’t work without, then
either your C++ implementation carefully implemented volatile to work with
threads (less likely), or you simply got lucky (more likely). Either case, your
code is not portable.

Second, just as const-qualified objects don’t become const until their con-
structors have run to completion, volatile-qualified objects become volatile
only upon exit from their constructors. In the statement

������ Singleton* volatile temp = new ������ Singleton;

the object being created doesn’t become volatile until the expression

new ������ Singleton;

has run to completion, and that means that we’re back in a situation where
instructions for memory allocation and object initialization may be arbitrarily
reordered.

This problem is one we can address, albeit somewhat awkwardly. Within the
Singleton constructor, we use casts to temporarily add “volatileness” to each
data member of the Singleton object as it is initialized, thus preventing relative
movement of the instructions performing the initializations. For example, here’s
the Singleton constructor written in this way. (To simplify the presentation,
we’ve used an assignment to give Singleton::x its first value instead of a
member initialization list, as we did in the code above. This change has no
effect on any of the issues we’re addressing here.)

Singleton()
{
static_cast<volatile int&>(x) = 5; // note cast to volatile

}

After inlining this function in the version of Singleton where pInstance is
properly volatile-qualified, we get

class Singleton {
public:
static Singleton* instance();
...

private:

10



static Singleton* volatile pInstance;
int x;
...

};

Singleton* Singleton::instance()
{
if (pInstance == 0) {
Lock lock;
if (pInstance == 0) {
Singleton* volatile temp =
static_cast<Singleton*>(operator new(sizeof(Singleton)));

static_cast<volatile int&>(temp->x) = 5;
pInstance = temp;

}
}

}

Now the assignment to x must precede the assignment to pInstance, because
both are volatile.

Unfortunately, this all does nothing to address the first problem: C++’s ab-
stract machine is single-threaded, and C++ compilers may choose to generate
thread-unsafe code from source like the above, anyway. Otherwise, lost opti-
mization opportunities lead to too big an efficiency hit. After all the discussion,
we’re back to square one. But wait, there’s more. More processors.

6 DCLP on Multiprocessor Machines

Suppose you’re on a machine with multiple processors, each of which has its
own memory cache, but all of which share a common memory space. Such an
architecture needs to define exactly how and when writes performed by one
processor propagate to the shared memory and thus become visible to other
processors. It is easy to imagine situations where one processor has updated
the value of a shared variable in its own cache, but the updated value has not
yet been flushed to main memory, much less loaded into the other processors’
caches. Such inter-cache inconsistencies in the value of a shared variable is
known as the cache coherency problem.

Suppose processor A modifies the memory for shared variable x and then
later modifies the memory for shared variable y. These new values must be
flushed to main memory so that other processors will see them. However, it
can be more efficient to flush new cache values in increasing address order, so
if y’s address precedes x’s, it is possible that y’s new value will be written to
main memory before x’s is. If that happens, other processors may see y’s value
change before x’s.

Such a possibility is a serious problem for DCLP. Correct Singleton initializa-
tion requires that the Singleton be initialized and that pInstance be updated to

11



be non-null and that these operations be seen to occur in this order. If a thread
on processor A performs step 1 and then step 2, but a thread on processor B
sees step 2 as having been performed before step 1, the thread on processor B
may again refer to an uninitialized Singleton.

The general solution to cache coherency problems is to use memory barriers
(i.e., fences): instructions recognized by compilers, linkers, and other optimizing
entities that constrain the kinds of reorderings that may be performed on reads
and writes of shared memory in multiprocessor systems. In the case of DCLP,
we need to use memory barriers to ensure that pInstance isn’t seen to be non-
null until writes to the Singleton have been completed. Here’s pseudocode
that closely follows an example given in [1]. We show only placeholders for the
statements that insert memory barriers, because the actual code is platform-
specific (typically in assembler).

Singleton* Singleton::instance () {
Singleton* tmp = pInstance;
... // insert memory barrier

if (tmp == 0) {
Lock lock;
tmp = pInstance;
if (tmp == 0) {
tmp = new Singleton;
... // insert memory barrier

pInstance = tmp;
}

}
return tmp;

}

Arch Robison (author of [12], but this is from personal communication)
points out that this is overkill:

Technically, you don’t need full bidirectional barriers. The first bar-
rier must prevent downwards migration of Singleton’s construction
(by another thread); the second barrier must prevent upwards mi-
gration of pInstance’s initialization. These are called ”acquire” and
”release” operations, and may yield better performance than full
barriers on hardware (such as Itainum) that makes the distinction.

Still, this is an approach to implementing DCLP that should be reliable,
provided you’re running on a machine that supports memory barriers. All ma-
chines that can reorder writes to shared memory support memory barriers in
one form or another. Interestingly, this same approach works just as well in
a uniprocessor setting. This is because memory barriers also act as hard se-
quence points that prevent the kinds of instruction reorderings that can be so
troublesome.

12



7 Conclusions and DCLP Alternatives

There are several lessons to be learned here. First, remember that timeslice-
based parallelism on a uniprocessor is not the same as true parallelism across
multiple processors. That’s why a thread-safe solution for a particular com-
piler on a uniprocessor architecure may not be thread-safe on a multiprocessor
architecture, not even if you stick with the same compiler. (This is a general
observation. It’s not specific to DCLP.)

Second, though DCLP isn’t intrinsically tied to Singleton, use of Singleton
tends to lead to a desire to “optimize” thread-safe access via DCLP. You should
therefore be sure to avoid implementing Singleton with DCLP. If you (or your
clients) are concerned about the cost of locking a synchronization object every
time instance is called, you can advise clients to minimize such calls by caching
the pointer that instance returns. For example, suggest that instead of writing
code like this,

Singleton::instance()->transmogrify();
Singleton::instance()->metamorphose();
Singleton::instance()->transmute();

clients do things this way:

Singleton* const instance =
Singleton::instance(); // cache instance pointer

instance->transmogrify();
instance->metamorphose();
instance->transmute();

One interesting way to apply this idea is to encourge clients to make a single call
to instance at the beginning of each thread that needs access to the singleton
object, caching the returned pointer in thread-local storage. Code employing
this technique thus pays for only a single lock access per thread.

Before recommending caching of the result of calling instance, it’s generally
a good idea to verify that this really leads to a significant performance gain.
Use a lock from a threading library to ensure thread-safe Singleton initialization,
then do timing studies to see if the cost is truly something worth worrying about.

Third, avoid using a lazily-initialized Singleton unless you really need it. The
classic Singleton implementation is based on not initializing a resource until that
resource is requested. An alternative is to use eager initialization instead, i.e., to
initialize a resource at the beginning of the program run. Because multithreaded
programs typically start running as a single thread, this approach can push some
object initializations into the single-threaded startup portion of the code, thus
eliminating the need to worry about threading during the initialization. In many
cases, initializing a singleton resource during single-threaded program startup
(e.g., prior to executing main) is the simplest way to offer fast, thread-safe
singleton access.

13



A different way to employ eager initialization is to replace use of the Singleton
Pattern with the Monostate Pattern [2]. Monostate, however, has different
problems, especially when it comes to controlling the order of initialization of
the nonlocal static objects that make up its state. Effective C++ [9] describes
these problems and, ironically, suggests using a variant of Singleton to escape
them. (The variant is not guaranteed to be thread safe[17].)

Another possibility is to replace a global singleton with one singleton per
thread, then use thread-local storage for singleton data. This allows for lazy
initialization without worrying about threading issues, but it also means that
there may be more than one “singleton” in a multithreaded program.

Finally, DCLP and its problems in C++ and C exemplify the inherent diffi-
culty in writing thread-safe code in a language with no notion of threading (or
any other form of concurrency). Multithreading considerations are pervasive,
because they affect the very core of code generation. As Peter Buhr pointed
out [3], the desire to keep multithreading out of the language and tucked away
in libraries is a chimera. Do that, and either (1) the libraries will end up putting
constraints on the way compilers generate code (as Pthreads already does) or
(2) compilers and other code-generation tools will be prohibited from perform-
ing useful optimizations even on single-threaded code. You can pick only two of
the troika formed by multithreading, a thread-unaware language, and optimized
code generation. Java and the .NET CLI, for example, address the tension by
introducing thread-awareness into the language and language infrastructure,
respectively [8, 12].

8 Acknowledgements

Pre-publication drafts of this article were reviewed by Doug Lea, Kevlin Hen-
ney, Doug Schmidt, Chuck Allison, Petru Marginean, Hendrik Schober, David
Brownell, Arch Robison, Bruce Leasure, and James Kanze. Their comments,
insights, and explanations greatly improved the presentation of the paper and
led us to our current understanding of DCLP, multithreading, instruction order-
ing, and compiler optimizations. After publication, we incorporated comments
by Fedor Pikus, Al Stevens, Herb Sutter, and John Hicken.

9 About the Authors

Scott Meyers has written three Effective C++ books and is consulting editor for
the Addison-Wesley Effective Software Development Series. His current inter-
ests focus on identifying fundamental principles for improving software quality.
His web site is http://aristeia.com.

Andrei Alexandrescu is the author of Modern C++ Design and of numerous
articles, most of which were written as a CUJ columnist. He pursues a Ph.D.
degree at University of Washington, specializing in programming languages. His
web site is http://moderncppdesign.com.

14



10 [Sidebar] ��������: A Brief History

To find the roots of volatile, let’s go back to the 1970s, when Gordon Bell (of
PDP-11 fame) introduced the concept of memory-mapped I/O (MMIO). Before
that, processors allocated pins and defined special instructions for performing
port I/O. The idea behind MMIO is to use the same pins and instructions
for both memory and port access. Hardware outside the processor intercepts
specific memory addresses and transform them into I/O requests; so dealing
with ports became simply reading from and writing to machine-specific memory
addresses.

What a great idea. Reducing pin count is good—pins slow down signal,
increase defect rate, and complicate packaging. Also, MMIO doesn’t require
special instructions for ports. Programs just use the memory, and the hardware
takes care of the rest.

Or almost.
To see why MMIO needs volatile variables, let’s consider the following

code:

unsigned int *p = GetMagicAddress();
unsigned int a, b;
a = *p;
b = *p;

If p refers to a port, a and b should receive two consecutive words read from
that port. However, if p points to a bona fide memory location, then a and b
load the same location twice and hence will compare equal. Compilers exploit
this assumption in the copy propagation optimization that transforms the last
line above into the more efficient:

b = a;

Similarly, for the same p, a, and b, consider:

*p = a;
*p = b;

The code writes two words to *p, but the optimizer might assume that
*p is memory and perform the dead assignment elimination optimization by
eliminating the first assignment. Clearly, this “optimization” would break the
code. A similar situation can arise when a variable is modified by both mainline
code and an interrupt service routine (ISR). What might appear to a compiler
to be a redundant read or write might actually be necessary in order for the
mainline code to communicate with an ISR.

So when dealing with some memory locations (e.g. memory mapped ports or
memory referenced by ISRs), some optimizations must be suspended. volatile
exists for specifying special treatment for such locations, specifically: (1) the
content of a volatile variable is “unstable” (can change by means unknown
to the compiler), (2) all writes to volatile data are “observable” so they must
be executed religiously, and (3) all operations on volatile data are executed

15



in the sequence in which they appear in the source code. The first two rules
ensure proper reading and writing. The last one allows implementation of I/O
protocols that mix input and output. This is informally what C and C++’s
volatile guarantees.

Java took volatile a step further by guaranteeing the properties above
across multiple threads. This was a very important step, but it wasn’t enough
to make volatile usable for thread synchronization: the relative ordering of
volatile and non-volatile operations remained unspecified. This ommission
forces many variables to be volatile to ensure proper ordering.

Java 1.5’s volatile [10] has the more restrictive, but simpler, acquire/release
semantics : any read of a volatile is guaranteed to occur prior to any memory
reference (volatile or not) in the statements that follow, and any write to a
volatile is guaranteed to occur after all memory references in the statements
preceding it. .NET defines volatile to incorporate multithreaded semantics as
well, which are very similar to the currently proposed Java semantics. We know
of no similar work being done on C’s or C++’s volatile.

References

[1] David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Hahr, Doug
Lea, Tom May, Jan-Willem Maessen, John D. Mitchell, Kelvin Nilsen,
Bill Pugh, and Emin Gun Sirer. The “Double-Checked Locking Pattern is
Broken” Declaration. Available at http://www.cs.umd.edu/∼pugh/java/
memoryModel/DoubleCheckedLocking.html.

[2] Steve Ball and John Crawford. Monostate Classes: The Power of One. C++
Report, May 1997. Reprinted in More C++ Gems, Robert C. Martin, ed.,
Cambridge University Press, 2000.

[3] Peter A. Buhr. Are Safe Concurrency Libraries Possible? Communications
of the ACM, 38(2):117–120, 1995. Available at http://citeseer.nj.nec.
com/buhr95are.html.

[4] Bruno De Bus, Daniel Kaestner, Dominique Chanet, Ludo Van Put, and
Bjorn De Sutter. Post-pass Compaction Techniques. Communications of
the ACM, 46(8):41–46, August 2003. Available at http://doi.acm.org/
10.1145/859670.859696.

[5] Robert Cohn, David Goodwin, P. Geoffrey Lowney, and Norman
Rubin. Spike: An Optimizer for Alpha/NT Executables. Avail-
able at http://www.usenix.org/publications/library/proceedings/
usenix-nt97/presentations/goodwin/index.htm, August 1997.

[6] IEEE Standard for Information Technology. Portable Operating System In-
terface (POSIX) — System Application Program Interface (API) Amend-
ment 2: Threads Extension (C Language). ANSI/IEEE 1003.1c-1995, 1995.

16



[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995. Also available as Design Patterns CD, Addison-Wesley, 1998.

[8] Doug Lea. Concurrent Programming in JavaTM. Addison-Wesley, 1999.
Excerpts relevant to this article can be found at http://gee.cs.oswego.
edu/dl/cpj/jmm.html.

[9] Scott Meyers. Effective C++, Second Edition. Addison-Wesley, 1998. Item
47 discusses the initialization problems that can arise when using non-local
static objects in C++.

[10] Sun Microsystems. J2SE 1.5.0 Beta 1. February 2004. http://java.
sun.com/j2se/1.5.0/index.jsp; see http://jcp.org/en/jsr/detail?
id=133 for details on the changes brought to Java’s memory model.

[11] Matt Pietrek. Link-Time Code Generation. MSDN Magazine, May
2002. Available at http://msdn.microsoft.com/msdnmag/issues/02/
05/Hood/.

[12] Arch D. Robison. Memory Consistency & .NET. Dr. Dobb’s Journal, April
2003.

[13] Douglas C. Schmidt and Tim Harrison. Double-Checked Locking. In Robert
Martin, Dirk Riehle, and Frank Buschmann, editors, Pattern Languages of
Program Design 3, chapter 20. Addison-Wesley, 1998. Available at http:
//www.cs.wustl.edu/∼schmidt/PDF/DC-Locking.pdf.

[14] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture, Volume 2. Wiley, 2000. Tutorial
notes based on the patterns in this book are available at http://cs.wustl.
edu/∼schmidt/posa2.ppt.

[15] ISO/IEC 14882:1998(E) International Standard. Programming languages
— C++. ISO/IEC, 1998.

[16] ISO/IEC 9899:1999 International Standard. Programming languages — C.
ISO/IEC, 1999.

[17] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-
Wesley, 1998. The discussion of the “Meyers Singleton” is on pp. 69ff.

17


